BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)
题目链接
https://www.lydsy.com/JudgeOnline/problem.php?id=2655
题解
据说有一种神仙容斥做法,但我不会。
以及貌似网上大多数人的dp和我的做法都不一样。
下面讲我的做法:
首先由于元素互不相同,那么显然可以先不考虑顺序。
所以要求的就是\(n![x^n]\prod^{m}_{i=1}(1+ix)\) (直接莽上生成函数是不是有点……)
于是发现这个东西和第一类斯特林数生成函数几乎一样,也可以轻易写出递推式\(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]\times i\)
有一个结论是,\(dp[i][j]\)是关于\(i\)的不超过\(2j\)次多项式。
感性理解的话,就是从\(1\)到\(i\)里选\(j\)个,求乘积之和,\(1\)到\(i\)里选\(j\)个一共有\(i\choose j\)种选法,这显然是\(j\)次多项式,再求\(j\)个不超过\(i\)的数的乘积显然也是\(j\)次,那么总共就是\(2j\)次。
于是求出前\(2n\)项,Lagrange插值计算即可。
(所以这其实是一种求第一类斯特林数\(\begin{bmatrix}n\\m\end{bmatrix}\) (\(n-m\)较小)的新方法?)
时间复杂度\(O(n^2)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
const int N = 1000;
llong fact[N+3],finv[N+3];
llong dp[N+3][N+3];
llong n,m,P;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
namespace Lagrange
{
llong ax[N+3],ay[N+3],poly[N+3];
llong aux[N+3],aux2[N+3];
void lagrange(int n)
{
aux[0] = 1ll;
for(int i=0; i<=n; i++)
{
for(int j=i+1; j>0; j--)
{
aux[j] = (aux[j-1]-aux[j]*ax[i]%P+P)%P;
}
aux[0] = P-aux[0]*ax[i]%P;
}
for(int i=0; i<=n; i++)
{
llong coe = 1ll;
for(int j=0; j<=n; j++)
{
if(i==j) continue;
coe = coe*(ax[i]-ax[j]+P)%P;
}
coe = mulinv(coe);
for(int j=0; j<=n+1; j++) aux2[j] = aux[j];
for(int j=n; j>=0; j--)
{
poly[j] = (poly[j]+ay[i]*aux2[j+1]%P*coe)%P;
aux2[j] = (aux2[j]+aux2[j+1]*ax[i])%P;
}
}
}
llong calc(int n,llong x)
{
llong ret = 0ll;
for(int i=n; i>=0; i--)
{
ret = (ret*x+poly[i])%P;
}
return ret;
}
void clear(int n)
{
for(int i=0; i<=n+1; i++) aux[i] = aux2[i] = poly[i] = 0ll;
}
}
int main()
{
scanf("%lld%lld%lld",&m,&n,&P);
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
dp[0][0] = 1ll;
for(int i=1; i<=n+n; i++)
{
dp[i][0] = 1ll;
for(int j=1; j<=i; j++)
{
dp[i][j] = (dp[i-1][j]+dp[i-1][j-1]*i)%P;
}
}
for(int i=0; i<=n+n; i++)
{
Lagrange::ax[i] = i;
Lagrange::ay[i] = dp[i][n];
}
Lagrange::lagrange(n+n);
llong ans = Lagrange::calc(n+n,m)*fact[n]%P;
printf("%lld\n",ans);
return 0;
}
BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)的更多相关文章
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- [BZOJ 2655]calc
Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...
- bzoj 2655: calc [容斥原理 伯努利数]
2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...
随机推荐
- 安装Composer与PsySH
Windows安装Composer 需要开启 openssl 配置:打开 php 目录下的 php.ini,将 extension=php_openssl.dll 前面的分号去掉就可以了. https ...
- 基于MatConvNet的CNN图像搜索引擎PicSearch
简介 Picsearch是一种基于卷积神经网络特征的图像搜索引擎. Github:https://github.com/willard-yuan/CNN-for-Image-Retrieval Web ...
- 关于tomcat部署项目的问题
问题是这样的 之前用tomcat8.5部署的项目,结果启动项目一直三个端口被占用,浏览器也打不开目标网页 卸了8,装了9.先配置的一大堆,结果可以打开Tomcat的主页locahost:8080,到此 ...
- LintCode 6---合并排序数组 II
import java.util.Arrays; public class Lint6 { /* * 合并两个排序的整数数组A和B变成一个新的数组.新数组也要有序. */ public static ...
- vue跳转新页面后回到顶部
全部页面的话就在mian.js中设置或者 单独的某个页面就在页面加载之前设置 单独设置需变为this.$router router.afterEach((to,from,next)=>{ win ...
- Vue初始化一个项目
@1 npm install -g @vue/cli-init vue init webpack projectName @2 cnpm install -g @vue/cli vue create ...
- java在遍历列表的时候删除列表中某个元素
在遍历list的时候需要删除其中的某些元素,不要用foreach遍历,需要用Iterator. List<String> list = new ArrayList<String> ...
- 神经网络优化算法:梯度下降法、Momentum、RMSprop和Adam
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度 ...
- linux 用户及文件权限管理
Linux 是一个可以实现多用户登陆的操作系统,比如“李雷”和“韩梅梅”都可以同时登陆同一台主机,他们共享一些主机的资源,但他们也分别有自己的用户空间,用于存放各自的文件.但实际上他们的文件都是放在同 ...
- 七、Vue Cli+ApiCloud
一.api.js (参考) 顶部注释: 底部注释: 二.导入 效果: 继续使用: 运行环境:用APP打开,浏览器没有api对象,只有APP运行环境才有API对象 代码如下: <template& ...