HDU3450_Counting Sequences
题意:
让你从所给的序列中找到他的子序列,使他们相邻之间差距不超过d,问有多少个转移的子序列
这题第一眼大概就知道是状态转移,sum[i]表示以前i个中有多少个,那么sum[i+1]比sum[i]
多了一个以第i+1为结尾的子序列,那么只需要知道前面当中以x(x与第i+1距离不超过d)结尾的子序列个数和,那么这个时候在用dp[x]表示当前以x结尾有多少个子序列,但是数字太大不能直接记录,直接求和.
所以需要在状态转移时候运用到一些技巧,树状数组(也可以用线段树)和离散化;
先读入所以数字,然后排序编号,并用树状数组维护
Description
And for a sub-sequence{ai1,ai2,ai3...aik},if it matches the following qualities: k >= 2, and the neighboring 2 elements have the difference not larger than d, it will be defined as a Perfect Sub-sequence. Now given an integer sequence, calculate the number
of its perfect sub-sequence.
Input
Output
Sample Input
4 2
1 3 7 5
Sample Output
4
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<stack>
#include<map>
#include<queue>
#include<vector> using namespace std;
const int maxn = 2e5+100;
const int MOD = 9901;
#define pr(x) cout << #x << " = " << x << " ";
#define prln(x) cout << #x << " = " << x <<endl;
#define ll long long ll cnt;
map<ll,ll> ID;
ll a[maxn],b[maxn],dp[maxn],n;
void getID(ll x) {
if(!ID.count(x)) {
ID[x] = ++cnt;
}
}
ll lowbit( ll x )
{
return x & (-x);
} void add(ll x,ll d)
{
while( x <= n)
{
dp[x] = (dp[x] + d)%MOD;;
x += lowbit(x);
}
} ll sum (ll x)
{
int ans = 0;
while(x)
{
ans = (ans + dp[x])%MOD;
x -= lowbit(x);
}
return ans%MOD;
} int main(){
#ifdef LOCAL
freopen("C:\\Users\\User Soft\\Desktop\\in.txt","r",stdin);
//freopen("C:\\Users\\User Soft\\Desktop\\out.txt","w",stdout);
#endif
ll d;
while( cin >> n >> d) {
ID.clear();cnt = 0;
memset(dp,0,sizeof dp);
for(int i = 0; i < n; ++i) {
scanf("%lld", &a[i]);
b[i] = a[i];
}
sort(b,b+n);
for(int i = 0; i < n; ++i) getID(b[i]);
for(int i = 0; i < n; i++) {
int l = lower_bound(b,b+n,a[i] - d) -b;
int r = upper_bound(b,b+n,a[i] + d) - b-1;
//if(r == l)
l = ID[b[l]],r = ID[b[r]];
ll num = (sum(r) - sum(l-1) +1)%MOD;
add(ID[a[i]],num );
}
cout << (sum(cnt) + 20*MOD- n)%MOD << endl; }
return 0;
}
HDU3450_Counting Sequences的更多相关文章
- [LeetCode] Repeated DNA Sequences 求重复的DNA序列
All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...
- [Leetcode] Repeated DNA Sequences
All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...
- 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)
Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...
- leetcode 187. Repeated DNA Sequences 求重复的DNA串 ---------- java
All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...
- [UCSD白板题] Longest Common Subsequence of Three Sequences
Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...
- Python数据类型之“序列概述与基本序列类型(Basic Sequences)”
序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主要以下几种类型: 3种基本序列类型(Basic Sequence Types):list. ...
- Extract Fasta Sequences Sub Sets by position
cut -d " " -f 1 sequences.fa | tr -s "\n" "\t"| sed -s 's/>/\n/g' & ...
- 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)
4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 16 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
随机推荐
- Font and PDF
1. 独立存在的Font文件 有三类: Type 1 Font TrueType Font OpenType Font Type 1 是由Adobe开发的,它是基于PostScript的Font,它通 ...
- 定制xfce4桌面==排除appfinder的綑绑
如下等同于安装 xfce4-meta,除了不安装 app-finder emerge -avq xfwm4 xfdesktop xfce4-session xfce4-settings xfce4-t ...
- Learning OSG programing---osgwindows
/* OpenSceneGraph example, osgwindows. * * Permission is hereby granted, free of charge, to any pers ...
- C++中的面向对象(二)
1,类之间的基本关系: 1,继承: 1,从已存在类细分出来的类和原类之间具有继承关系(is-a): 1,子类就是一个(is-a)父类: 2,继承是单向的: 2,继承的类(子类)拥有原类(父类)的所有属 ...
- webpack打包配置中出现的问题
第一个错误: One CLI for webpack must be installed. These are recommended choices, delivered as separate p ...
- 重读ORB_SLAM之Tracking线程难点
1. 初始化 当获取第一帧图像与深度图后,首先设置第一帧位姿为4*4单位矩阵,然后为整个map添加关键帧与地图点.且更新地图点与关键帧的联系,例如地图点被哪个关键帧观测到,而此关键帧又包含哪些地图点. ...
- Redis的备份与恢复
备份 dump.rdb:RDB方式的备份文件 appendonly.aof:AOF方式的备份文件 rdb 备份处理 # 编辑redis.conf文件,找到如下参数,默认开启. save 900 1 s ...
- socket套接字编程 HTTP协议
socket套接字编程 套接字介绍 1. 套接字 : 实现网络编程进行数据传输的一种技术手段 2. Python实现套接字编程:import socket 3. 套接字分类 >流式套接 ...
- go语言从例子开始之Example28.非阻塞通道操作
常规的通过通道发送和接收数据是阻塞的.然而,我们可以使用带一个 default 子句的 select 来实现非阻塞 的发送.接收,甚至是非阻塞的多路 select. Example: package ...
- Pythonf反射
Python中,反射有4个方法.分别是:hasattr().getattr().setattr()和delattr(). hasattr() 定义 hasattr()函数用于判断对象是否包含对应的属性 ...