题意:

让你从所给的序列中找到他的子序列,使他们相邻之间差距不超过d,问有多少个转移的子序列

这题第一眼大概就知道是状态转移,sum[i]表示以前i个中有多少个,那么sum[i+1]比sum[i]

多了一个以第i+1为结尾的子序列,那么只需要知道前面当中以x(x与第i+1距离不超过d)结尾的子序列个数和,那么这个时候在用dp[x]表示当前以x结尾有多少个子序列,但是数字太大不能直接记录,直接求和.

所以需要在状态转移时候运用到一些技巧,树状数组(也可以用线段树)和离散化;

先读入所以数字,然后排序编号,并用树状数组维护

Description

For a set of sequences of integers{a1,a2,a3,...an}, we define a sequence{ai1,ai2,ai3...aik}in which 1<=i1<i2<i3<...<ik<=n, as the sub-sequence of {a1,a2,a3,...an}. It is quite obvious that a sequence with the length n has 2^n sub-sequences.
And for a sub-sequence{ai1,ai2,ai3...aik},if it matches the following qualities: k >= 2, and the neighboring 2 elements have the difference not larger than d, it will be defined as a Perfect Sub-sequence. Now given an integer sequence, calculate the number
of its perfect sub-sequence. 
 

Input

Multiple test cases The first line will contain 2 integers n, d(2<=n<=100000,1<=d=<=10000000) The second line n integers, representing the suquence
 

Output

The number of Perfect Sub-sequences mod 9901 
 

Sample Input

4 2
1 3 7 5
 

Sample Output

4
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<stack>
#include<map>
#include<queue>
#include<vector> using namespace std;
const int maxn = 2e5+100;
const int MOD = 9901;
#define pr(x) cout << #x << " = " << x << " ";
#define prln(x) cout << #x << " = " << x <<endl;
#define ll long long ll cnt;
map<ll,ll> ID;
ll a[maxn],b[maxn],dp[maxn],n;
void getID(ll x) {
if(!ID.count(x)) {
ID[x] = ++cnt;
}
}
ll lowbit( ll x )
{
return x & (-x);
} void add(ll x,ll d)
{
while( x <= n)
{
dp[x] = (dp[x] + d)%MOD;;
x += lowbit(x);
}
} ll sum (ll x)
{
int ans = 0;
while(x)
{
ans = (ans + dp[x])%MOD;
x -= lowbit(x);
}
return ans%MOD;
} int main(){
#ifdef LOCAL
freopen("C:\\Users\\User Soft\\Desktop\\in.txt","r",stdin);
//freopen("C:\\Users\\User Soft\\Desktop\\out.txt","w",stdout);
#endif
ll d;
while( cin >> n >> d) {
ID.clear();cnt = 0;
memset(dp,0,sizeof dp);
for(int i = 0; i < n; ++i) {
scanf("%lld", &a[i]);
b[i] = a[i];
}
sort(b,b+n);
for(int i = 0; i < n; ++i) getID(b[i]);
for(int i = 0; i < n; i++) {
int l = lower_bound(b,b+n,a[i] - d) -b;
int r = upper_bound(b,b+n,a[i] + d) - b-1;
//if(r == l)
l = ID[b[l]],r = ID[b[r]];
ll num = (sum(r) - sum(l-1) +1)%MOD;
add(ID[a[i]],num );
}
cout << (sum(cnt) + 20*MOD- n)%MOD << endl; }
return 0;
}

HDU3450_Counting Sequences的更多相关文章

  1. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  2. [Leetcode] Repeated DNA Sequences

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  3. 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)

    Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...

  4. leetcode 187. Repeated DNA Sequences 求重复的DNA串 ---------- java

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  5. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  6. Python数据类型之“序列概述与基本序列类型(Basic Sequences)”

    序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主要以下几种类型: 3种基本序列类型(Basic Sequence Types):list. ...

  7. Extract Fasta Sequences Sub Sets by position

    cut -d " " -f 1 sequences.fa | tr -s "\n" "\t"| sed -s 's/>/\n/g' & ...

  8. 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)

    4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 16 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. FFT&NTT数学解释

    FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...

  2. VS2012修改代码时会把后面的覆盖

    vs2012修改代码时会把后面的覆盖,并且鼠标指针变成灰色竖方块 解决:按一下键盘上的Insert键

  3. Daily Life——团队冲刺博客——(领航篇)

    目录 领航目标 各个成员在 Alpha 阶段认领的任务 各个成员的具体任务安排 整个项目预期的任务量 团队成员贡献值的计算规则 燃尽图 Daily Life团队冲刺博客 领航目标 各个成员在 Alph ...

  4. Java前端控制器模式~

    前端控制器设计模式用于提供集中式请求处理机制,以便所有请求将由单个处理程序处理.此处理程序可以执行请求的身份验证/授权/记录或跟踪,然后将请求传递到相应的处理程序. 以下是这种类型的设计模式的实体. ...

  5. Codeforces 1140C(贪心+堆)

    题面 传送门 题意: 给出长度为n的序列b,t,定义一个子序列的值为\(\min\{ b_i\} \times \sum t_i\),求所有子序列中值最大的一个,输出最大值 分析 假如固定某个b[i] ...

  6. SqlServer表名称定义

    每一个数据表 添加一个 扩展 属性:Description  填写表描述. 查看是否所有表都添加的Sql如下: SELECT a.name AS name, g.[value] FROM sys.ta ...

  7. LeetCode Array Easy 219. Contains Duplicate II

    ---恢复内容开始--- Description Given an array of integers and an integer k, find out whether there are two ...

  8. sql查询静态数据

    select * from ( ,,,'高中')) AS Education ( EducationId,EducationName )

  9. SQL如何使用快照恢复之前的数据

    什么是快照 数据库快照是SQL server 2005的一个新功能.给出的定义如下 数据库快照是数据库的只读静态视图.在创建时每个数据库快照在事务上都与源数据库一致.在创建数据库快照时,源数据库通常会 ...

  10. 前端学习(二十二)css3(笔记)

    html5        普通:        header section footer nav article aside figure 特殊:        canvas video audio ...