BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4710
题解
本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.com/GXZlegend/p/11407185.html 骗了,给的最后一道题是一个基础容斥的题。
(不过反演的本质就是容斥呢,如果二项式反演的 \(g(n)\) 的 \(n\) 是 \(0\) 的话也就跟最常见的容斥差不多了)
考虑如果钦定有 \(k\) 个同学没有拿到特产,那么特产中剩下的同学就可以随便分了。对于第 \(i\) 个特产,划分给 \(n-k\) 个同学的方案数显然就是插板法一下就没了,\(\binom {a_i+n-k-1}{n-k-1}\)。
然后容斥上一下就可以了。最后答案就是
\]
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 2000 + 7;
const int P = 1e9 + 7;
int n, m, mxa;
int a[N];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
int fac[N], inv[N], ifac[N];
inline void ycl(const int &n = ::n) {
fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
}
inline int C(int x, int y) {
if (x < y) return 0;
return (ll)fac[x] * ifac[y] % P * ifac[x - y] % P;
}
inline void work() {
ycl(n + mxa);
int ans = 0;
for (int i = 0; i <= n; ++i) {
int f = C(n, i);
if (i & 1) f = P - f;
for (int j = 1; j <= m; ++j) f = (ll)f * C(a[j] + n - i - 1, n - i - 1) % P;
sadd(ans, f);
}
printf("%d\n", ans);
}
inline void init() {
read(n), read(m);
for (int i = 1; i <= m; ++i) read(a[i]), smax(mxa, a[i]);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
BZOJ4710 [Jsoi2011]分特产 容斥的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产(容斥)
传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
随机推荐
- android 6.0适配(总结)
6.0的适配主要是权限: 权限的分组: 普通权限:也就是正常权限,是对手机的一些正常操作,对用户的隐私没有太大影响的权限,比如手机的震动,网络访问,蓝牙等权限,这些权限会在应用被安装的时候默认授予,用 ...
- WORD 图片能粘到百度编辑器吗
在之前在工作中遇到在富文本编辑器中粘贴图片不能展示的问题,于是各种网上扒拉,终于找到解决方案,在这里感谢一下知乎中众大神以及TheViper. 通过知乎提供的思路找到粘贴的原理,通过TheViper找 ...
- jsp选择文件夹上传
文件夹数据库处理逻辑 publicclass DbFolder { JSONObject root; public DbFolder() { this.root = new JSONObject(); ...
- [CF1081H]Palindromic Magic
题意:给两个字符串\(a,b\),求出有多少种不同的字符串能通过从第一个串中取出一个回文串,从第二个串中取出一个回文串,按顺序拼接得到. 题解:证明?看官方题解吧 一些定义: 回文串拆分:\(s=ab ...
- 去掉xcode中警告的一些经验
1.编译时,编译警告忽略掉某些文件 只需在在文件的Compiler Flags 中加入 -w 参数,例如: 2.编译时,编译警告忽略掉某段代码 #pragma clang diagnostic pus ...
- (转)Python3 zip() 函数
转:http://www.runoob.com/python3/python3-func-zip.html 描述 zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返 ...
- 金山云无法ping通外网
解决方法:在网络安全组中放行ping端口.
- Log4j appender、layout
appender输出类型配置 layout日志信息格式 Threshold属性指定输出等级 Append属性指定是否追加内容 (1)appender输出类型配置 Log4j官方的appender给出了 ...
- PADS软件
最近学习PADS,搜集到的一些软件.之前一直在使用Altium designer,但是AD太占资源了,还有都说PADS比AD好. 下面是来自网上对主流PCB的介绍(原文:http://9mcu.com ...
- Gitlab仓库搭建和免密使用gitlab
Gitlab简介 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务. 可通过Web界面进行访问公开的或者私人项目.它拥有与Github类似的 ...