[AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】
题目链接:Vijos - P1943
题目分析
这是 AHOI 普及组的题目,然而我并不会做= =弱到不行= =
首先,从 (x, 0) 到 (0, y) 的最短路,一定是只能向左走和向上走,那么用组合数算一下方案数是 C(x + y, x) ,记为 Solve(x, y), 其实就是将 y 次向上走分配到 x + 1 个横坐标上。
那么不考虑不能有交点的方案就是 Solve(x1, y1) * Solve(x2, y2) 。
然后题目要求两条路径不能有交点,那么我们就考虑容斥,用总的方案减去有交点的方案。
我们将两条相交的路径在最左端的交点处进行交换,即那个交点向左的部分,原先属于路径 1 的部分现在属于路径2,原先属于路径 2 的部分现在属于路径 1。
那么,我们就得到了一条从 (x1, 0) 到 (0, y2) 的路径和一条 (x2, 0) 到 (0, y1) 的路径,可以发现,这样的一对路径和原题中相交的一对路径是一一对应的。
那么我们的答案就是 Solve(x1, y1) * Solve(x2, y2) - Solve(x1, y2) * Solve(x2, y1) 。
代码
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; typedef long long LL; const int MaxN = 200000 + 5, Mod = 1000000007, MN = 200000; int x, y, xx, yy; LL Ans;
LL Fac[MaxN]; void Prepare()
{
Fac[0] = 1;
for (int i = 1; i <= MN; ++i)
Fac[i] = Fac[i - 1] * (LL)i % Mod;
} LL Pow(LL a, int b)
{
LL ret = 1, f = a;
while (b)
{
if (b & 1)
{
ret *= f;
ret %= Mod;
}
b >>= 1;
f *= f;
f %= Mod;
}
return ret;
} inline LL Inv(LL x)
{
return Pow(x, Mod - 2);
} LL C(int x, int y)
{
return Fac[x] * Inv(Fac[y]) % Mod * Inv(Fac[x - y]) % Mod;
} LL Solve(int x, int y)
{
return C(x + y, x);
} int main()
{
Prepare();
scanf("%d%d%d%d", &x, &xx, &y, &yy);
Ans = (Solve(x, y) * Solve(xx, yy) % Mod - Solve(x, yy) * Solve(xx, y) % Mod) % Mod;
Ans = (Ans + Mod) % Mod;
cout << Ans << endl;
return 0;
}
[AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】的更多相关文章
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- 【容斥+组合数】Massage @2018acm徐州邀请赛 E
问题 E: Massage 时间限制: 1 Sec 内存限制: 64 MB 题目描述 JSZKC feels so bored in the classroom that he w ...
- 【BZOJ4665】小w的喜糖 容斥+组合数
[BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...
- [BZOJ3027][Ceoi2004]Sweet 容斥+组合数
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 135 Solved: 66[Submit][Status] ...
- Codeforces 100548F - Color (组合数+容斥)
题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...
- BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- cf997C. Sky Full of Stars(组合数 容斥)
题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...
- HDU - 5201 :The Monkey King (组合数 & 容斥)
As everyone known, The Monkey King is Son Goku. He and his offspring live in Mountain of Flowers and ...
随机推荐
- 怎样在win7下装ubuntu(硬盘版安装)
1)首先还是分区,在计算机上右键--管理--磁盘管理 装Ubuntu分配的硬盘大小最好是(20G以上)不要太小,这里请注意,ubuntu和windows文件系统全然不同,所以我们划好要给ubuntu的 ...
- Swift开发:NSLayoutConstraint纯代码实现自动布局-初级篇
要求 宽高200的view,通过代码,使得view在距离父控件的右下角20边距处 /* 约束的设置,控件内部约束由自己添加,比如宽高,如果是与其他的 控件约束那么有父控件添加 *创建约束 NSLayo ...
- mybatis0202 一对一查询 resultType实现
一对一查询 查询订单信息和用户信息 创建po类 基础的单表的 po(数据库类)类:Items.java, Orderdetail.java, Orders.java, User.java 一对一查询映 ...
- Linux 内核使用的 GNU C 扩展
gcc核心扩展linuxforum(转)=========================== Linux 内核使用的 GNU C 扩展 =========================== GNC ...
- Publisher/Subscriber(发布/订阅者)消息模式开发流程
该模式的作用是发布者和订阅者 可以相互发送消息 发布者和订阅者都充当 生产者和消费者 发布者 package publisher.to.subscriber; import java.awt.font ...
- 如何在Byte[]和String之间进行转换
源自C#与.NET程序员面试宝典. 如何在Byte[]和String之间进行转换? 比特(b):比特只有0 1,1代表有脉冲,0代表无脉冲.它是计算机物理内存保存的最基本单元. 字节(B):8个比特, ...
- Android(java)学习笔记176:BroadcastReceiver之 短信发送的广播接收者
有时候,我们需要开发出来一个短信监听器,监听用户发送的短信记录,下面就是一个案例,这里同样需要使用广播机制. 下面同样是代码示例,MainActivity.java 和 activity_main. ...
- 在Nginx中搭建Nagios监控平台
本文只做Nginx下Nagiox安装的说明,其它关于Nagios监控的详细配置请参考我的另一篇文章[Ubuntu 10.04下构建Nagios监控平台] Nagios依赖PHP环境和perl环境.由于 ...
- <>跟!=
这两个是没有区别的,都是不等于
- log4net日志组件
转载:http://www.cnblogs.com/knowledgesea/archive/2012/04/26/2471414.html 一.什么是log4net组件 Log4net是基于.net ...