最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)
再开始前我们先普及一下简单的图论知识
图的保存:
1.邻接矩阵。 G[maxn][maxn];
2.邻接表
邻接表我们有两种方式
(1)vector< Node > G[maxn];
这个是之前就定义了图的大小了,再下面使用的时候就不用对图的大小进行申请了, 但是因为是直接申请了大小
要对图进行初始化,因此可能在某些题目中这样使用的话会超时
(2)vector< vector<Node> > G;
这个是未定义大小,但是在使用之前要对其的大小内存进行申请。
G.resize(n+1);
Dijkstra's Algorithm
算法思想:
1.从源点出发源点所有能一步到达的点的距离更新,然后从除源点外的所有点之中找出距离源点最近的点。
2.然后更新我们之前所找到的最短路点所有连接的点,但是要求这个点未曾被当做最短点处理过
3.重复上述操作n次。
单源最短路 我们还可以对他进行优先队列优化下面是以HDU2544为模板的用Dijkstra's Algorithm
邻接矩阵版,不用优先队列优化
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define INF 0xfffffff
#define maxn 1002 int G[maxn][maxn];//保存图
int dist[maxn];//表示从起点到第i点的距离
bool vis[maxn];//判断这个点是否被参观过
int m, n;//边数 m 顶点数 n void Init()
{
for(int i=0; i<=n; i++)
{
vis[i] = false;
dist[i] = INF;
for(int j=0; j<=i; j++)
G[i][j] = G[j][i] = INF;
}
}
int Dij(int Star,int End)//起点 --- 终点
{
dist[Star] = 0;
for(int i=1; i<=n; i++)
{
int index = 0, Min = INF;
for(int j=1; j<=n; j++)
{
if( !vis[j] && Min > dist[j] )//找出没有被参观过,并且距离起点最近的点
Min = dist[j], index = j;
} vis[index] = true; for(int j=1; j<=n; j++)//更新所有未曾到达的点距离,使之成为最近的点
{
if( !vis[j] && dist[j] > dist[index] + G[index][j] )
dist[j] = dist[index] + G[index][j];
}
} return dist[End]; } int main()
{
while(cin >> n >> m, m + n)
{
Init(); int a, b , c; for(int i=0; i<m; i++)
{
cin >> a >> b >> c;
G[a][b] = min(G[a][b], c);
G[b][a] = G[a][b];
} int ans = Dij(1,n); cout << ans << endl;
}
return 0;
}
接下来是邻接表版,用到了优先队列优化
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define INF 0xfffffff
#define maxn 1002 struct Node
{
int e;
int w;
friend bool operator < (Node A, Node B)
{
return A.w > B.w;
}
}; bool vis[maxn]; int m, n;
vector< vector<Node> > G; int Dij(int Star,int End)
{
Node P, Pn;
P.e = Star;
P.w = ; priority_queue<Node> Q; Q.push(P); while( !Q.empty() )
{
P = Q.top();
Q.pop(); if( vis[P.e] )
continue; vis[P.e] = true; if( P.e == End )
return P.w; int len = G[P.e].size(); for(int i=; i< len; i++)
{
Pn.e = G[P.e][i].e;
Pn.w = G[P.e][i].w + P.w; if( !vis[Pn.e] )
Q.push(Pn);
}
}
return -;
} int main()
{
Node P;
while(cin >> n >> m, m+n)
{
G.clear();
G.resize(n+); memset(vis,false,sizeof(vis)); for(int i=; i<m; i++)
{
int a, b, c;
cin >> a >> b >> c;
P.e = b;
P.w = c;
G[a].push_back(P);
P.e = a;
G[b].push_back(P);
} int ans = Dij(,n); cout << ans << endl;
}
return ;
}
下面是Floyd算法
Floyd是求多源最短路, 即可以求出所有点对之间的最短路
这个算法就只要注意两点就行了,初始化的时候 G[i][i] = 0, 其他的初始化为INF
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define INF 0xfffffff
#define maxn 1002 int G[maxn][maxn];
int dist[maxn][maxn];
int m, n; void Floyd()
{
for(int k=; k<=n; k++)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
}
}
}
}
void Init()
{
for(int i=; i<=n; i++)
{
G[i][i] = ;
for(int j=; j<i; j++)
G[i][j] = G[j][i] = INF;
}
} int main()
{
while(cin >> n >> m, m+n)
{
Init();
for(int i=; i<m; i++)
{
int a, b, c;
cin >> a >> b >> c;
G[a][b] = min(G[a][b],c);
G[b][a] = G[a][b];
} Floyd(); cout << G[][n] << endl;
}
return ;
}
最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)的更多相关文章
- ACM算法模板 · 一些常用的算法模板-模板合集(打比赛专用)
ACM算法模板 · 一些常用的算法模板-模板合集(打比赛专用)
- 学渣乱搞系列之Tarjan模板合集
学渣乱搞系列之Tarjan模板合集 by 狂徒归来 一.求强连通子图 #include <iostream> #include <cstdio> #include <cs ...
- ACM模板合集
写在前面: 第一年小白拿铜牌,第二年队友出走,加上疫情原因不能回校训练导致心底防线彻底崩盘,于是选择退役. 自从退役之后,一直想我打了那么久的ACM,什么也没留下觉得很难受,突然想到我打ACM的时候, ...
- 最短路算法模板--SPFA
初见SPFA时,直接认成了优先队列优化的Dijkstra,经过几位大佬的指点,我终于明白了他们的差异. Dijkstra是保证已经出队过的点不再入队,SPFA是已经在队列中不再入队.比较起来,SPFA ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【转】Tarjan算法 资料合集
http://blog.csdn.net/fuyukai/article/details/51039788 Tarjan三大算法之双连通分量(割点,桥) Robert Endre Tarjan是一个美 ...
- 最短路算法模板SPFA、disjkstra、Floyd
朴素SPFA(链表建边) #include <iostream> #include <cstdio> #include <cstring> #include < ...
- (模板)poj2387(dijkstra+优先队列优化模板题)
题目链接:https://vjudge.net/problem/POJ-2387 题意:给n个点(<=1000),m条边(<=2000),求结点n到结点1的最短路. 思路:dijkstra ...
- 最短路问题的三种算法&模板
最短路算法&模板 最短路问题是图论的基础问题.本篇随笔就图论中最短路问题进行剖析,讲解常用的三种最短路算法:Floyd算法.Dijkstra算法及SPFA算法,并给出三种算法的模板.流畅阅读本 ...
随机推荐
- qt 关于内存泄漏的检测
Qt 关于内存泄露的检测: 收藏人:guitarhua 2012-02-10 | 阅: 转: | 来源 | 分享 Qt 关于内存泄露的检测:工具篇 ...
- Visual C++内存泄露检测—VLD工具使用说明
一. VLD工具概述 Visual Leak Detector(VLD)是一款用于Visual C++的免费的内存泄露检测工具.他的特点有:可以得到内存泄漏点的调用堆栈,如果可以的话,还 ...
- 异步tcp通信——APM.ConsoleDemo
APM测试 俗话说麻雀虽小,五脏俱全.apm虽然简单,但是可以实现单机高性能消息推送(可以采用redis.kafka等改造成大型分布式消息推送服务器). 测试demo: using System; u ...
- C# trace debug TraceListener调试信息详解
在C#编程中,可能要碰到把调试信息输出的问题,我们可以自己把信息显示在某个控件上,但是MS自己提供了一套机制帮助我们输出一些调试信息,这些信息有助于我们判断程序的走向,不用自己再去额外写调试代码了. ...
- angular.js学习手册(二)
如何使用angularjs? 各个 angular.js 版本下载: https://github.com/angular/angular.js/releases 下载完之后,在你需要使用angula ...
- JS字符串常用方法
// 来自 http://www.runoob.com/js/js-strings.html var str01 = "odd open xboxone" , str02 ...
- python自学笔记
python自学笔记 python自学笔记 1.输出 2.输入 3.零碎 4.数据结构 4.1 list 类比于java中的数组 4.2 tuple 元祖 5.条件判断和循环 5.1 条件判断 5.2 ...
- mybatis审查要点
1.where条件遗漏情况 <select id="findActiveBlogLike" resultType="Blog"> SELECT * ...
- Qt零基础教程(四) QWidget详解篇
在博客园里面转载我自己写的关于Qt的基础教程,没次写一篇我会在这里更新一下目录: Qt零基础教程(四) QWidget详解(1):创建一个窗口 Qt零基础教程(四) QWidget详解(2):QWid ...
- Best Time to Buy and Sell sock II
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...