ZOJ3329之经典概率DP
One Person Game
Time Limit: 1 Second Memory Limit: 32768 KB Special Judge
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces.
All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter,
and the game is played as follow:
- Set the counter to 0 at first.
- Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise,
add the counter by the total value of the 3 up-facing numbers. - If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test
case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <=
6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2
0 2 2 2 1 1 1
0 6 6 6 1 1 1
Sample Output
1.142857142857143
1.004651162790698
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754
/*题意:
有三个骰子,分别有k1,k2,k3个面。
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0 分析:
如果dp[i]表示拥有分数i到游戏结束的期望步数
则
(1):dp[i]=SUM(p[k]*dp[i+k])+p[0]*dp[0]+1;//p[k]表示添加分数为k的概率,p[0]表示分数变为0的概率
假定
(2):dp[i]=A[i]*dp[0]+B[i];
则
(3):dp[i+k]=A[i+k]*dp[0]+B[i+k];
将(3)代入(1)得:
(4):dp[i]=(SUM(p[k]*A[i+k])+p[0])*dp[0]+SUM(p[k]*B[i+k])+1;
将4与2做比較得:
A[i]=(SUM(p[k]*A[i+k])+p[0]);
B[i]=SUM(p[k]*B[i+k])+1;
当i+k>n时A[i+k]=B[i+k]=0可知
所以dp[0]=B[0]/(1-A[0])可求出
*************************************************************************
总结下这类概率DP:
既DP[i]可能由DP[i+k]和DP[i+j]须要求的比方DP[0]决定
相当于概率一直递推下去会回到原点
比方
(1):DP[i]=a*DP[i+k]+b*DP[0]+d*DP[i+j]+c;
可是DP[i+k]和DP[0]都是未知
这时候依据DP[i]的方程式如果一个方程式:
比方:
(2):DP[i]=A[i]*DP[i+k]+B[i]*DP[0]+C[i];
由于要求DP[0],所以当i=0的时候可是A[0],B[0],C[0]未知
对照(1)和(2)的区别
这时候对照(1)和(2)发现两者之间的区别在于DP[i+j]
所以依据(2)求DP[i+j]然后代入(1)消除然后对照(2)就能够得到A[i],B[i],C[i]
然后视详细情况依据A[i],B[i],C[i]求得A[0],B[0],C[0]继而求DP[0]
请看这题:http://acm.hdu.edu.cn/showproblem.php?pid=4035
*************************************************************************
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=500+10;
int n,k1,k2,k3,a,b,c;
double p[20],A[MAX+10],B[MAX+10]; void dfs(int i){//求A[i],B[i]
if(A[i]>0)return;
if(i>n){A[i]=B[i]=0;return;}
A[i]=p[0],B[i]=1;
for(int k=3;k<=k1+k2+k3;++k){
dfs(i+k);
A[i]+=p[k]*A[i+k];
B[i]+=p[k]*B[i+k];
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
memset(p,0,sizeof p);
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
p[0]=1.0/(k1*k2*k3);
for(int i=1;i<=k1;++i){
for(int j=1;j<=k2;++j){
for(int k=1;k<=k3;++k){
p[i+j+k]+=p[0];//求i+j+k的概率
}
}
}
p[a+b+c]-=p[0];//a+b+c的分数不能等于a,b,c,所以须要减去
memset(A,0,sizeof A);
memset(B,0,sizeof B);
dfs(0);
/*memset(A,0,sizeof A);
memset(B,0,sizeof B);
for(int i=n;i>=0;--i){
A[i]=p[0],B[i]=1;
for(int k=3;k<=k1+k2+k3;++k){
A[i]+=p[k]*A[i+k];
B[i]+=p[k]*B[i+k];
}
}*/
printf("%.15f\n",B[0]/(1-A[0]));
}
return 0;
}
ZOJ3329之经典概率DP的更多相关文章
- ZOJ 3329 One Person Game (经典概率dp+有环方程求解)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...
- poj 2096 Collecting Bugs 概率dp 入门经典 难度:1
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 2745 Accepted: 1345 ...
- 动态规划之经典数学期望和概率DP
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...
- [转]概率DP总结 by kuangbin
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...
- 2018.09.27 bzoj3029: 守卫者的挑战(概率dp)
传送门 概率dp经典题目. 直接f[i][j][k]f[i][j][k]f[i][j][k]表示当前是第i次挑战,已经胜利了j次,目前的背包剩余空间是k. 然后用前面的转移后面的就行了. 注意第三维可 ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- 概率dp集合
bzoj1076 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后 ...
- DP专题之概率DP
注意:在概率DP中求期望要逆着推,求概率要正着推 概率DP求期望: 链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 dp[ i ]表示从i点走到n ...
随机推荐
- 从XML文件中获取格式化的文本信息
在FMW的运维过程中,时常需要将中间传输的XML信息转换为excel格式化的问题提交给关联系统人员,现总结三种格式化问题提供方式 一.使用Excel转换 因为从系统中取到的xml文档为中间信息文档,需 ...
- SGU 144.Meeting
题目: 两支地区ACM比赛的队伍决定为了国际决赛而在一起集训. 他们约定在某天的 X 时到 Y 时的某一时刻相会. 但由于他们很少按时到 (有的队伍比赛那天都会迟到), 他们没有设定一个确切的相遇时间 ...
- SGU 221.Big Bishops(DP)
题意: 给一个n*n(n<=50)的棋盘,放上k个主教(斜走),求能放置的种类总数. Solution : 同SGU 220,加个高精度就好了. code #include <iostre ...
- .animate动画
.animate(params, [duration], [easing], [callback]) params: 结果样式属性 duration: 动画时长 也可以用 slow normal fa ...
- 网站开发常用jQuery插件总结(三)拖拽插件gridster
1.gridster插件功能 实现类似于win8 磁贴拖拽的功能 2.gridster官方地址 http://gridster.net/ 在官方的网站上也有插件的帮助和实例,但是按照官方的说明,我在本 ...
- 阿里云 centos vim 显示中文 乱码
开始以为是vim 设置编码的问题 :网上搜 改 .vimrc 无效!!! 后转战 是不是系统里面没有中文字体 1.先从你本机 C:\Windows\Fonts 拷贝或者网络上下载你想要安装的 ...
- 那些年被我坑过的Python——山外有山(第四章)
装饰器: 定义: 本质是函数,(装饰其他函数)就是为其他函数添加附加功能原则: 1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 优点: 装饰器带来的最直观的好处:减少对函数的细化 ...
- java导入导出excel常用操作小结及简单示例
POI中常用设置EXCEL的操作小结: 操作excel如下 HSSFWorkbook wb = new HSSFWorkbook(); //创建一个webbook,对应一个Excel文件 HSSFS ...
- 原生JS写Ajax的请求函数
一.JS原生ajax ajax:一种请求数据的方式,不需要刷新整个页面:ajax的技术核心是 XMLHttpRequest 对象:ajax 请求过程:创建 XMLHttpRequest 对象.连接服务 ...
- LeapMotion预览——什么是LeapMotion
LeapMotion预览 这个就是LeapMotion: 原文转自: LeapMotion预览 LeapMotion 官网:http://leapmotion.com/ 开发者:https://d ...