Description

给出一个数字N

求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\)

Input

第一行为一个正整数T,表示数据组数。

接下来T行为询问,每行包含一个正整数N。

T<=5000,N<=10^7

Output

按读入顺序输出答案。

Sample Input

1

10

Sample Output

136

sol

这种题,八成和欧拉函数或者莫比乌斯函数有关......

那就推式子:

\(\sum_{i=1}^{n}\sum_{i=1}^{n}\varphi(gcd(i,j))\)

\(=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(d)\sum_{e|i,e|j}\mu(e)\)

\(=\sum_{d=1}^{n}\varphi(d)\sum_{e=1}^{\lfloor\frac{n}{d}\rfloor}\mu(e)\sum_{i=1}^{\lfloor\frac{n}{de}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{de}\rfloor}1\)

\(=\sum_{d=1}^{n}\varphi(d)\sum_{e=1}^{\lfloor\frac{n}{d}\rfloor}\mu(e)\lfloor\frac{n}{de}\rfloor^2\)

\(=\sum_{T=1}^{n}\lfloor\frac{n}{T}\rfloor^2\sum_{d|T}\varphi(\frac{T}{d})\mu(d)\)

前面的那个直接分块即可,后面的冷静分析一下:

“看到\(\mu\)就想到积性函数,就想到质因数分解,就想到消去$>$2的幂的贡献,OIer的思想唯有在这一层能如此跃进 ”

我们把T分解质因数之后,对于每个质数\(p_i\)的\(q_i\)次幂单独计算,最后再乘起来。

由于乘数里面有\(\mu\),所以大于2的幂次产生的贡献可以忽略,对于每个质数,后面这个式子就能够直接推出公式,具体地:

\(if\quad qi=0\quad f(p_i)=1\)

\(if\quad q_i=1\quad f(p_i)=p_i-2\)

\(if\quad q_i=2\quad f(p_i)=(p_i-1)^2\)

\(else\quad f(p_i)=pi^{qi-2}(p_i-1)^2\)

那么这个就可以线性筛了。

然后就没有了。

Code

#include <cstdio>
#define ll long long
int ls,n,T,vis[10000005],pri[10000005],tot;ll s[10000005];
void shai()
{
s[1]=1;for(int i=2;i<=1e7;i++)
{
if(!vis[i]) pri[++tot]=i,s[i]=i-2;
for(int j=1;j<=tot&&i*pri[j]<=1e7;j++)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0)
{
if(i/pri[j]%pri[j]==0) s[i*pri[j]]=s[i]*pri[j];
else s[i*pri[j]]=s[i/pri[j]]*(pri[j]-1)*(pri[j]-1);
break;
}
s[i*pri[j]]=s[i]*(pri[j]-2);
}
}
for(int i=1;i<=1e7;i++) s[i]+=s[i-1];
}
ll cal(int n){ll ans=0;for(int i=1;i<=n;i=ls+1) ls=n/(n/i),ans+=(s[ls]-s[i-1])*(n/i)*(n/i);return ans;}
int main(){for(shai(),scanf("%d",&T);T--;printf("%lld\n",cal(n))) scanf("%d",&n);}

【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛的更多相关文章

  1. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  2. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  3. [BZOJ4804]欧拉心算

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...

  4. 欧拉筛法模板&&P3383 【模板】线性筛素数

    我们先来看欧拉筛法 •为什么叫欧拉筛呢?这可能是跟欧拉有关 •但是为什么叫线性筛呢?因为它的复杂度是线性的,也就是O(n),我们直接来看代码   #include<cstdio> #inc ...

  5. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  6. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  7. 并不对劲的bzoj4804:欧拉心算

    题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...

  8. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  9. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

随机推荐

  1. Linux性能监测:监测目的与工具介绍

    性能监测是系统优化过程中重要的一环,如果没有监测.不清楚性能瓶颈在哪里,优化什么呢.怎么优化呢?所以找到性能瓶颈是性能监测的目的,也是系统优化的关键.本文对Linux性能监测的应用类型.底线和监测工具 ...

  2. Three.js加载gltf模型

    效果图 demo import './index.css'; var stats; stats = new Stats(); document.body.appendChild( stats.dom ...

  3. maven项目如何启动运行---发布到tomcat中

    前面两篇文章: 新建maven框架的web项目 以及 将原有项目改成maven框架 之后,我们已经有了maven的项目 那么 maven项目到底怎么启动呢 如果我们直接在myeclipse中按以前的启 ...

  4. 第十二章 MySQL触发器(待续)

    ······

  5. svn锁定问题解决

    问题描述: 今天遇到svn文件被某个人锁定,搞得全部人都不能提交更新. 解决方法一: 首先,先定位到工程目录下,然后使用如下命令查看是否有锁 find . | grep ".svn/lock ...

  6. [原创]Spring JdbcTemplate 使用总结与经验分享

    引言 近期开发的几个项目,均是基于Spring boot框架的web后端项目,使用JdbcTemplate执行数据库操作,实际开发过程中,掌握了一些有效的开发经验,踩过一些坑,在此做个记录及总结,与各 ...

  7. vue简单路由(一)

    在项目中,将vue的单页面应用程序改为了多页面应用程序,因此在某些场景下,需要频繁的切换两个页面,因此考虑使用路由,这样会减少服务器请求. 使用vue-cli(vue脚手架)快速搭建一个项目的模板(w ...

  8. git rm简介

    本文翻译整理自:http://web.mit.edu/~mkgray/project/silk/root/afs/sipb/project/git/git-doc/git-rm.html 在git中我 ...

  9. 使用axis2进行WebService的开发

    使用axis2进行WebService的开发 Apache Axis2 是 Apache Axis SOAP 项目的后继项目.此项目是 Web 服务核心引擎的重要改进,目标是成为 Web 服务和面向服 ...

  10. MySQL的blob类型

    MySQL中的Blob类型 MySQL中存放大对象的时候,使用的是Blob类型.所谓的大对象指的就是图片,比如jpg.png.gif等格式的图片,文档,比如pdf.doc等,以及其他的文件.为了在数据 ...