题目描述

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

输入

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

输出

一个 N × M 的矩阵, Count(i, x)的末位数字。

样例输入

3 2
1 1 2

样例输出

11
11
21


题解

dp

设f[x]表示恰好装满x体积时的方案数(没有限制),可以用01背包算法求出。这是总方案数。

然后考虑不选某物品的情况。

设g[x]为不选当前物品恰好装满x体积时的方案数。

当x小于w[i]时,i物品一定不会被选上,此时g[x]=f[x]。

当x大于等于w[i]时,i物品可能会被选上,直接求不选的情况比较困难。

我们可以换个思路,用总方案数-选的方案数得到不选的方案数。

总方案数及f[x],不选的方案数可以想为先不选i再最后把i选上,即g[x-w[i]]。

所以g[x]=f[x]-g[x-w[i]]。

最后输出g即可。

#include <cstdio>
int w[2010] , f[2010] , g[2010];
int main()
{
int n , m , i , j;
scanf("%d%d" , &n , &m);
f[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &w[i]);
for(j = m ; j >= w[i] ; j -- ) f[j] = (f[j] + f[j - w[i]]) % 10;
}
for(i = 1 ; i <= n ; i ++ )
{
for(j = 0 ; j < w[i] ; j ++ ) g[j] = f[j];
for(j = w[i] ; j <= m ; j ++ ) g[j] = (f[j] - g[j - w[i]] + 10) % 10;
for(j = 1 ; j <= m ; j ++ ) printf("%d" , g[j]);
printf("\n");
}
return 0;
}

【bzoj2287】[POJ Challenge]消失之物 背包dp的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  4. BZOJ2287: 【POJ Challenge】消失之物(背包dp)

    题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...

  5. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  6. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  7. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  8. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. nigx配置location规则

    以下是收集的,对于不是很熟的朋友,配置转发很有帮助 1.location匹配命令和优先级: 优先级: Directives with the = prefix that match the query ...

  2. 重新格式化hadoop的namenode导致datanode无法启动的最简单解决办法

    一般namenode只格式化一次,重新格式化不仅会导致之前的数据都不可用,而且datanode也会无法启动.在datanode日志中会有类似如下的报错信息: java.io.IOException: ...

  3. what is feeding and what is 读扩散 and 写扩散?

    what is feeding? 通俗点说feed系统就是当你登陆进对应网站后:微信朋友圈的动态.人人网上看到的一件件新鲜事.新浪微博上推到你面前的一条条新围脖等等.系统中的每一条消息就是一个feed ...

  4. grafana使用Prometheus数据源监控mongo数据库

    数据库改用mongo后,监控需求就需要整合进grafana里,由于一直在坚持docker化部署,那么此次也不例外. 1. 安装Prometheus: What is Prometheus? Prome ...

  5. 嵌入式C语言查表法

    转自:https://blog.csdn.net/morixinguan/article/details/51799668    作者:Engineer-Bruce_Yang 就像下面的这个表 之前写 ...

  6. MySQL 主从服务器配置

    在主服务器Ubuntu上进行备份,执行命令: mysqldump -uroot -p --all-databases --lock-all-tables > ~/master_db.sql -u ...

  7. go学习笔记-函数

    函数 定义 格式 func function_name( [parameter list] ) [return_types] { 函数体 } 解析 func:函数由 func 开始声明 functio ...

  8. 【Leetcode】709. To Lower Case

    To Lower Case Description Implement function ToLowerCase() that has a string parameter str, and retu ...

  9. 隐式Dijkstra:在状态集合中用优先队列求前k小

    这种技巧是挺久以前接触的了,最近又突然遇到几道新题,于是总结了一下体会. 这种算法适用的前提是,标题所述的"状态集合"大到不可枚举(否则枚举就行了qaq) ...

  10. VGA 时序标准

    VGA 显示器扫描方式从屏幕左上角一点开始,从左像右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT 对电子束进行消隐,每行结束时,用行同步信号进行同步:当扫描完所有的行 ...