题目描述

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

输入

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

输出

一个 N × M 的矩阵, Count(i, x)的末位数字。

样例输入

3 2
1 1 2

样例输出

11
11
21


题解

dp

设f[x]表示恰好装满x体积时的方案数(没有限制),可以用01背包算法求出。这是总方案数。

然后考虑不选某物品的情况。

设g[x]为不选当前物品恰好装满x体积时的方案数。

当x小于w[i]时,i物品一定不会被选上,此时g[x]=f[x]。

当x大于等于w[i]时,i物品可能会被选上,直接求不选的情况比较困难。

我们可以换个思路,用总方案数-选的方案数得到不选的方案数。

总方案数及f[x],不选的方案数可以想为先不选i再最后把i选上,即g[x-w[i]]。

所以g[x]=f[x]-g[x-w[i]]。

最后输出g即可。

#include <cstdio>
int w[2010] , f[2010] , g[2010];
int main()
{
int n , m , i , j;
scanf("%d%d" , &n , &m);
f[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &w[i]);
for(j = m ; j >= w[i] ; j -- ) f[j] = (f[j] + f[j - w[i]]) % 10;
}
for(i = 1 ; i <= n ; i ++ )
{
for(j = 0 ; j < w[i] ; j ++ ) g[j] = f[j];
for(j = w[i] ; j <= m ; j ++ ) g[j] = (f[j] - g[j - w[i]] + 10) % 10;
for(j = 1 ; j <= m ; j ++ ) printf("%d" , g[j]);
printf("\n");
}
return 0;
}

【bzoj2287】[POJ Challenge]消失之物 背包dp的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  4. BZOJ2287: 【POJ Challenge】消失之物(背包dp)

    题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...

  5. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  6. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  7. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  8. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. MySQL高可用之MGR安装测试(续)

      Preface       I've implemented the Group Replication with three servers yesterday,What a shame it ...

  2. python核心编程2 第十二章 练习

    12–5. 使用 __import__().(a) 使用 __import__ 把一个模块导入到你的名称空间. 你最后使用了什么样的语法? (b) 和上边相同, 使用 __import__() 从指定 ...

  3. HTML基础全荟

    第一讲 html概述 1.认识HTML <! DOCTYPE html> <html> <style></style> <head>< ...

  4. 【ospf-路由过滤】

  5. web前端总结面试问题(理论)

    一个页面从输入url到页面显示加载完成,这个过程发生了什么? 1.浏览器根据请求的URL交给DNS域名解析,找到真实的IP,向服务器发起请求. 2.服务器交给后台处理完成后返回数据,浏览器接收文件(h ...

  6. Delphi 过程类型

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  7. Hadoop(14)-MapReduce框架原理-切片机制

    1.FileInputFormat切片机制 切片机制 比如一个文件夹下有5个小文件,切片时会切5个片,而不是一个片 案例分析 2.FileInputFormat切片大小的参数配置 源码中计算切片大小的 ...

  8. Linux下编译出现undefined reference to ‘pthread_create’问题解决

    1.代码 /* * File: HeartPackageSendAgent.cpp * Author: Pangxiaojian * * * 主要实现:向服务器发送心跳包,每5s向服务器发送一个心跳包 ...

  9. 怎么实现hibernate悲观锁和乐观锁?

    隔离级别的安全控制是整体一个大的方面,而锁机制更加的灵活,它执行的粒度可以很小,可以在一个事务中存在. Hibernate悲观锁是依靠底层数据库的锁机制实现,在查询query.setLockMode( ...

  10. Vue 去脚手架

    上回模仿了一个nw,按照原理说,简单. 今天说Vue,脚手架是个好东西,做项目都给你配置好,不过对于我这种只想做一个界面的人来说,有点儿太大了,用不上. 如果说,不用脚手架要面临哪些问题呢. 1. 组 ...