【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp
题目描述
输入
输出
样例输入
4 10 3
8 9
4 21
3 16
8 12
样例输出
22
题解
区间dp
考试题。。。考挂了。。。
(以下内容复制自题解)
考虑 dp[i][j][0/1]表示已经处理了从左数的 i 个和从右数的 j 个的案件,当前在 i 还是在 j
dp[i][j][0]可以由 dp[i-1][j][0],dp[i][j+1][1]+dis 来转移
dp[i][j][1]同理。
(以上内容复制自题解)
个人想法:
首先一定是先处理区间端点。一个大概思路是:对于非必选的点能不选就不选,而区间端点必选,其余点不必选,因此只需要考虑区间端点。
(或者一个更好的思考方法是:考虑把这个过程反过来,变为从$B$开始走,每个点必须在$ANS-T_i$时间内到达,最终要求到达0位置。显然经过的点一定不会傻到不选,因此反过程先选中间再选端点,正过程就是先选端点再选中间。
PS:$ANS$满足单调性,因此CQzhangyu就这样切了此题。。)
然后设$f[i][j][0/1]$表示左端点为$i$,右端点为$j$,当前处理完$i/j$的最小时间。直接转移即可。注意一下这是一个半开半闭区间的状态,因此初始状态需要计算,最终答案直接用$f[i][i][0/1]$统计。
时间复杂度$O(n^2)$
代码简单的不行= =
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
using namespace std;
struct data
{
int p , t;
bool operator<(const data &a)const {return p < a.p;}
}a[N];
int f[N][N][2];
int main()
{
int n , m , i , j , k , ans = 1 << 30;
scanf("%d%*d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &a[i].p , &a[i].t);
sort(a + 1 , a + n + 1);
memset(f , 0x3f , sizeof(f));
f[1][n][0] = max(a[1].p , a[1].t) , f[1][n][1] = max(a[n].p , a[n].t);
for(k = n - 1 ; k ; k -- )
{
for(i = 1 ; i <= n - k + 1 ; i ++ )
{
j = i + k - 1;
if(i > 1) f[i][j][0] = min(f[i][j][0] , f[i - 1][j][0] + a[i].p - a[i - 1].p) , f[i][j][1] = min(f[i][j][1] , f[i - 1][j][0] + a[j].p - a[i - 1].p);
if(j < n) f[i][j][0] = min(f[i][j][0] , f[i][j + 1][1] + a[j + 1].p - a[i].p) , f[i][j][1] = min(f[i][j][1] , f[i][j + 1][1] + a[j + 1].p - a[j].p);
f[i][j][0] = max(f[i][j][0] , a[i].t) , f[i][j][1] = max(f[i][j][1] , a[j].t);
}
}
for(i = 1 ; i <= n ; i ++ ) ans = min(ans , min(f[i][i][0] , f[i][i][1]) + abs(a[i].p - m));
printf("%d\n" , ans);
return 0;
}
【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp的更多相关文章
- 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业 DP
[BZOJ3379][Usaco2004 Open]Turning in Homework 交作业 Description 贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶 ...
- BZOJ 3379: [Usaco2004 Open]Turning in Homework 交作业
Description 贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶牛同学回家. 每门科目的老师所在的教室排列在一条长为H(1≤H≤1000)的走廊上,他们只在课后接收 ...
- 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业
题解: 比较容易想到二分答案+时间逆流 这样就变成了经典的路灯问题 f[a][b][0/1] 其实可以不用二分答案 根据倒着考虑我们会发现一定是先走旁边的再走中间的 计算到当前点+下课时间所需的最小时 ...
- 【BZOJ3379】【USACO2004】交作业 区间DP
题目描述 数轴上有\(n\)个点,你要从位置\(0\)去位置\(B\),你每秒钟可以移动\(1\)单位.还有\(m\)个限制,每个限制\((x,y)\)表示你要在第\(t\)秒之后(可以是第\(t\) ...
- [BZOJ3379] Turning in Homework
中文题目:提交作业 原文题目:Turning in Homework 传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3379 哎,今天竟然没有 ...
- bzoj 3379 - [USACO2004] 交作业
Description 一个数轴上有 \(n \le 1000\) 个位置, 每个位置有一个时间 \(t_i\) 要求在 时刻 \(t_i\) 后, 至少经过该位置一次. (去交作业) 求从 \(0\ ...
- POJ 1991 Turning in Homework(区间DP)
题目链接 Turning in Homework 考虑区间DP $f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案. $f[i][j][1]$为只考虑区间$[i, ...
- python学习笔记(二)python基础知识(交作业)
交作业 #!/usr/bin/env python # coding: utf-8 # # 1. 每个用户购买了多少不同种类的产品 # filename = 'train.txt' import sy ...
- ThinkPHP5作业管理系统中处理学生未交作业与已交作业信息
在作业管理系统中,学生登陆到个人中心后可以通过左侧的菜单查看自己已经提交的作业和未提交作业.那么在系统中如何实现这些数据的查询的呢?首先我们需要弄清楚学生(Student).班级(class).作业提 ...
随机推荐
- Python实现trim函数
Python中其实也有类似Java的trim函数的,叫做strip,举例: #!/usr/bin/python # -*- coding: UTF-8 -*- str = "0000000h ...
- JDK1.8的安装
[环境准备] OS版本:Windows10企业版.64位操作系统: JDK版本:jdk-8u131-windows-x64.exe [彻底卸载已安装的JDK] 01:卸载或删除JDK服务.有三种方式: ...
- 通过swagger下载的文件乱码解决方法,求解
这里的数据显示 点击Download Templates下载之后是显示一个response流都不是一个xlsx文件 这个是由什么原因造成的,求解?
- 关于okHttp框架的使用
在之前的项目中,使用传统的HttpClient来返回一个图片信息流的时候总是报错,最后发现是因为传统的传输方式会对流的大小有限制,当超过某个值的时候就会报异常,最后决定使用OkHttp框架来解决这个问 ...
- hadoop生态搭建(3节点)-06.hbase配置
# http://archive.apache.org/dist/hbase/1.2.4/ # ==================================================== ...
- 什么是高防服务器?如何搭建DDOS流量攻击防护系统
关于高防服务器的使用以及需求,从以往的联众棋牌到目前发展迅猛的手机APP棋牌,越来越多的游戏行业都在使用高防服务器系统,从2018年1月到11月,国内棋牌运营公司发展到了几百家. 棋牌的玩法模式从之前 ...
- yum方式安装及配置最新的mysql5.7
1.删除旧版本的MySQL rpm -qa|grep -i mysql 用命令yum -y remove mysql 2.下载新版安装源 下载mysql的repo源 这个安装的mysql5.7.20 ...
- My First Marathon【我的第一次马拉松】
My First Marathon A month before my first matathon, one of my ankles was injured and this meant not ...
- 插头DP(基于连通性状态压缩的动态规划问题)(让你从入门到绝望)
今天,我,Monkey king 又为大家带来大(ju)佬(ruo)的算法啦!--插头DP 例题(菜OJ上的网址:http://caioj.cn/problem.php?id=1489): 那么,这道 ...
- SAPの販売管理で、価格設定をするまでの関連カスタマイズ画面
この記事ではSAP SDで.価格を決めるまでに必要な設定画面について述べています. condition table (条件テーブル) 条件レコードのキー項目を定義したもの.3桁の数字で名前がついている ...