P2501 [HAOI2006]数字序列

题目描述

现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。

输入输出格式

输入格式:

第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。

输出格式:

第一行一个整数表示最少需要改变多少个数。

第二行一个整数,表示在改变的数最少的情况下,每个数改变的绝对值之和的最小值。

说明

90%的数据n<=6000。

100%的数据n<=35000。

保证所有数列是随机的。


“数据随机”==乱搞 啊哈

陷入了笛卡尔树的坑里

看了题解,大家一致认为第一问灰常简单,第二问灰常毒瘤

我:

好吧,第一问其实有思想的,发现直接求要改变的死活不好弄,不妨使用补集转换的思想,求最多不改变的数字

设\(dp_i\)代表以\(i\)为末尾的数字不改变时的最大不改变数字

转移有:

\(dp_i=max_{a_i-a_j \ge i-j} dp_j +1\)

复杂度是\(O(N^2)\)的

我们发现,其实我们是在最大化转移次数

如果把转移条件移项\(a_i-i \ge a_j-j\)

设\(b_i=a_i-i\),问题就转换成了求\(LIS\),可以\(O(nlogn)\)求解

第二问 有点微妙 实质上是一个跑不满的\(O(N^3)\)做法,上界极其宽松(当然要写的好才行)

把\(a\)变得单调上升,等价与把\(b\)变的单调不降,花费是等价的

设\(f_i\)为把前\(i\)项合法的最小花费

转移有:

\(f_i=min_{dp_i==dp_j+1} f_j+cost_{i,j}\)

先不考虑如何计算花费,考虑卡枚举前一维的常数

很显然前\(i\)项是要跑满的,从哪里转移我们建一个链表就表示转移集合

考虑如何计算费用

发现如果可以转移,那所有的在\(b_i\)和\(b_i\)之间的\(b\)没有值是夹在它们中间的。

它们一定会往两端进行靠拢,可以证明(没看懂原证明),存在一个\(k\),使\(b_i\)$b_k$都为$b_i$,使$b_k+1$\(b_j\)都为\(b_j\)

所有我们只需要枚举中间的这个\(k\)就行啦

代码细节还是很多的,没给值域还是很坑的


Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define ll long long
ll min(ll x,ll y){return x<y?x:y;}
ll abs(ll x){return x>0?x:-x;}
const ll N=35002;
ll n,a[N],b[N],g[N],k;
std::vector <ll > dx[N];ll dp[N],s1[N],s2[N];
int main()
{
scanf("%lld",&n);dp[0]=-0x3f3f3f3f,b[n+1]=-dp[0],b[0]=dp[0];
for(ll i=1;i<=n;i++)
scanf("%lld",a+i),b[i]=a[i]-i;
for(ll i=1;i<=n;i++)
{
if(b[i]>=dp[k]) dp[++k]=b[i],g[i]=k;
else
{
g[i]=std::upper_bound(dp+1,dp+1+k,b[i])-dp;
dp[g[i]]=b[i];
}
}
printf("%lld\n",n-k);g[++n]=k+1;
for(ll i=0;i<=n;i++) dx[g[i]].push_back(i);
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(ll i=1;i<=n;i++)
{
for(ll j=0;dx[g[i]-1][j]<i&&j<dx[g[i]-1].size();j++)
{
ll to=dx[g[i]-1][j];
if(b[i]<b[to]) continue;
for(ll l=to;l<=i;l++) s1[l]=abs((ll)(b[l]-b[to])),s2[l]=abs((ll)(b[l]-b[i]));
for(ll l=to+1;l<=i;l++) s1[l]+=s1[l-1],s2[l]+=s2[l-1];
for(ll l=to;l<=i;l++)
dp[i]=min(s1[l]-s1[to]+s2[i]-s2[l]+dp[to],dp[i]);
}
}
printf("%lld\n",dp[n]);
return 0;
}

洛谷 P2501 [HAOI2006]数字序列 解题报告的更多相关文章

  1. 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告

    P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...

  2. 洛谷 P2659 美丽的序列 解题报告

    P2659 美丽的序列 题目背景 GD是一个热衷于寻求美好事物的人,一天他拿到了一个美丽的序列. 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的"美丽度"和" ...

  3. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  4. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  5. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  6. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  7. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  9. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

随机推荐

  1. 【tp5.1】七牛云上传图片

    composer安装: composer require qiniu/php-sdk 配置使用: 在tp5.1的配置文件app.php中配置七牛云的参数 'qiniu' => [ 'access ...

  2. 6-C++远征之封装篇[上]-学习笔记

    C++远征之封装篇(上) 课程简介 类(抽象概念),对象(真实具体) 配角: 数据成员和成员函数(构成了精彩而完整的类) 构造函数 & 析构函数(描述了对象的生生死死) 对象复制和对象赋值 ( ...

  3. Linux C语言结构体-学习笔记

    Linux C语言结构体简介 前面学习了c语言的基本语法特性,本节进行更深入的学习. 预处理程序. 编译指令: 预处理, 宏定义, 建立自己的数据类型:结构体,联合体,动态数据结构 c语言表达式工具 ...

  4. Fabric go sdk初始化所需证书解析

    fabric sdk go 提供的官方文档少之又少,要想入门,主要就靠研究官方的e2e系列示例,这真的是一件挺无奈的事情.没法子,只能硬着头皮上了.研究发现,e2e这个例子是通过cryptogen生成 ...

  5. (数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)

    聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接 ...

  6. R语言绘图:词云图

    使用wordcloud2绘制词云图 library(wordcloud2) findwords<-function(tf){ txt<-scan(tf,"") wl&l ...

  7. 线程基础四 使用Monitor类锁定资源

    前面我们讲过了lock的用法以及竞争条件导致的错误,实际上lock关键字是Monitor类用例的一个语法糖.如果我们分解使用了lock关键字的代码,将会看到它如下面代码片段所示: bool acqui ...

  8. 牛客暑假多校第六场I-Team Rocket

    一.题意 我们是穿越银河的火箭队....... 给出若干个区间,之后给出若干个点,要求对每个点求出,第一个覆盖点的区间的数量,之后用当前所有点覆盖的区间的序号的乘积结合输入的Y来生成下一位点.最后输出 ...

  9. python基础之IO模型

    IO模型分类 五种IO Model blocking IO 阻塞IO nonblocking IO 非阻塞IO IO multiplexing IO多路复用 signal driven IO 信号驱动 ...

  10. 解析HTML利器AngleSharp介绍

    解析HTML利器AngleSharp介绍 AngleSharp是基于.NET(C#)开发的专门为解析xHTML源码的DLL组件. 项目地址:https://github.com/FlorianRapp ...