问题:
  如何能够在 n×n 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。

分析:
  我们可以用一串数字来表示问题的解,比如[2,4,1,3] 表示 4×4 棋盘的4皇后问题的解,第一行的棋子摆在第2列;第二行的棋子摆在第4列,依此类推
  这里将用回溯法进行解题,可以看出,某一行的棋子摆了之后,棋子的那一列肯定不能再摆其他的棋子了,

  所以解[x,x,x,……,x] 一定是 1-n 的一个全排列,

  所以这里的解空间树我们选择排列树。

思路:
  既然已经确定了要用排列树来作为问题的解空间树,接下来要确定的就是剪枝函数了。

  剪枝函数只要从已经摆好的棋子的第一个开始遍历,依此判断下面的棋子是否在其攻击范围内即可,

  因为我们之前没有在同一行摆多个棋子,也没有在同一列摆多个棋子,所以只要判断其他棋子是否在其斜线上的攻击范围即可,比如

      

  第一行的棋子摆在第3列上,只要沿图中方向判断即可

    

for (int i = ; i <= n-; i++)
{
for (int j = i + ; j <= n; j++)
{
int left = -(j - i);//向左的斜线
int right = (j - i);//向右的斜线
if (pieces[j] == pieces[i] + left||pieces[j] == pieces[i] + right)
{//第i行皇后和第j行皇后会互相攻击
return false;
}
}
}

代码:

  这样摆好所有棋子后即可输出,代码如下:

  

#include<iostream>
#include<ctime>
using namespace std; bool isOK(int n, int pieces[])
{ //剪枝函数
//判断当前状态是否合理,即皇后会不会互相攻击
for (int i = ; i <= n-; i++)
{
for (int j = i + ; j <= n; j++)
{
int left = -(j - i);//向左的斜线
int right = (j - i);//向右的斜线
if (pieces[j] == pieces[i] + left||pieces[j] == pieces[i] + right)
{//第i行皇后和第j行皇后会互相攻击
return false;
}
}
}
//所有皇后都不会互相攻击
return true;
} void swap(int &a, int &b)
{
int t = a;
a = b;
b = t;
} void nQueen(int n, int t, int pieces[])
{
if (t > n)
{
for (int i = ; i <= n; i++)
{
for (int j = ; j < pieces[i]; j++)
cout << "- ";
cout << pieces[i]<<" ";
for (int j = pieces[i] + ; j <= n; j++)
cout << "- ";
cout << endl;
}
cout << endl;
}
else
{
for (int i = t; i <= n; i++)
{
swap(pieces[t], pieces[i]);
if (isOK(t, pieces))
{
nQueen(n, t + , pieces);
}
swap(pieces[t], pieces[i]);
}
}
} void main()
{
int n;
cin >> n;
int *pieces = new int[n + ];
for (int i = ; i <= n; i++)
{
pieces[i] = i;
}
nQueen(n, , pieces);
cout << "OK" << endl;
system("pause");
}

n皇后问题[分支限界法]的更多相关文章

  1. ytu 1789:n皇后问题(水题,枚举)

    n皇后问题 Time Limit: 1 Sec  Memory Limit: 64 MB  Special JudgeSubmit: 12  Solved: 3[Submit][Status][Web ...

  2. 1319-n皇后问题

    描述 在n×n 格的棋盘上放置彼此不受攻击的n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于在n×n格的棋盘上放置n个皇后,任何2 个皇后不放在同一 ...

  3. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  4. 八皇后算法的另一种实现(c#版本)

    八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...

  5. [LeetCode] N-Queens II N皇后问题之二

    Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...

  6. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  7. N皇后问题—初级回溯

    N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...

  8. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  9. N皇后问题

    题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...

随机推荐

  1. 《Java编程思想》笔记 第十七章 容器深入研究

    1 容器分类 容器分为Collection集合类,和Map键值对类2种 使用最多的就是第三层的容器类,其实在第三层之上还有一层Abstract 抽象类,如果要实现自己的集合类,可以继承Abstract ...

  2. Tomcat 部署2个项目,只有一个可以访问的解决方案

    Tomcat 部署2个应用后只有一个可以访问,另一个不能访问,一般来说就是因为Tomcat启动加载了配置文件后,当启动另一个应用时由于一些配置名称相同所以不再加载,导致之后应用无法正常启动. 异常信息 ...

  3. 【原创】Maven cobertura整合多个子项目下的单测覆盖率报告

    今天在调试一个UT job的时候发现找不到cobertural报告文件,后来发现在Maven的自项目里找到了对应的代码覆盖率报告,但都是是分散在每个子项目下面的,看起来很不方便.就在想是不是可以把这些 ...

  4. 最小生成树的Kruskal算法

        库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的 ...

  5. 【基数排序】bzoj1901 Zju2112 Dynamic Rankings

    论NOIP级别的n²算法…… 跟分块比起来,理论上十万的数据只慢4.5倍左右的样子…… #include<cstdio> #include<algorithm> using n ...

  6. 五角数 Exercise06_01

    /** * @author 冰樱梦 * 题目:五角数 * 时间:2018年下半年 * * */ public class Exercise06_01 { public static void main ...

  7. angualrjs2教程

    1.一本本开源的Angular2书籍:https://zhangchen915.gitbooks.io/angular2-training/ 2.好的博客教程,讲的通俗易懂:http://codin. ...

  8. Activity组件(传递数据)

    (一) 1.效果图:点击按钮“调用第二个Activity”,转到第二页面,之后点击“返回数据”,将第二个页面的数据传到第一个页面         2. activity_main.xml <?x ...

  9. 【Linux】ubuntu或linux网卡配置/etc/network/interfaces

    转自:http://gfrog.net/2008/01/config-file-in-debian-interfaces-1/   青蛙准备写一个系列文章,介绍一些Debian/Ubuntu里面常用的 ...

  10. 扩展gridview轻松实现冻结行和列

    在实际的项目中,由于项目的需要,数据量比较大,同时显示栏位也比较多,要做gridview里显示完整,并做到用户体验比较好,这就需要冻结表头和关键列.由于用到的地方比较多,我们可以护展一个gridvie ...