hdu 5184(数学-卡特兰数)
Brackets
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 659 Accepted Submission(s): 170
● the empty sequence is a regular brackets sequence,
● if s is a regular brackets sequence, then (s) are regular brackets sequences, and
● if a and b are regular brackets sequences, then ab is a regular brackets sequence.
● no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), (()), ()(), ()(())
while the following character sequences are not:
(, ), )(, ((), ((()
Now we want to construct a regular brackets sequence of length n, how many regular brackets sequences we can get when the front several brackets are given already.
The first line contains an integer n.
Then second line contains a string str which indicates the front several brackets.
Please process to the end of file.
[Technical Specification]
1≤n≤1000000
str contains only '(' and ')' and length of str is larger than 0 and no more than n.
()
4
(
6
()
2
2
For the first case the only regular sequence is ()().
For the second case regular sequences are (()) and ()().
For the third case regular sequences are ()()() and ()(()).
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const LL mod = ;
const int N = ;
char s[N];
LL f[N];
LL pow_mod(LL a,LL n){
LL ans = ;
while(n){
if(n&) ans = ans*a%mod;
a = a*a%mod;
n>>=;
}
return ans;
}
void init(){
f[] = f[] = ;
for(int i=;i<N;i++){
f[i] = f[i-]*i%mod;
}
}
LL C(LL n,LL m){
LL a = f[m]*f[n-m]%mod;
LL inv = pow_mod(a,mod-);
return f[n]*inv%mod;
}
int main()
{
init();
int n;
while(scanf("%d",&n)!=EOF){
scanf("%s",&s);
if(n%==){
printf("0\n");
continue;
}
int len = strlen(s);
int l=,r=;
bool flag = true;
for(int i=;i<len;i++){ ///已经加入的左括号必须不小于右括号
if(s[i]=='(') l++;
if(s[i]==')') r++;
if(l<r) {
flag = false;
break;
}
}
if(!flag||l<r){
printf("0\n");
continue;
}
int m= n/;
l = m-l,r = m-r;
if(l<||r<){ ///防止这种情况 4 ((()
printf("0\n");
continue;
}
printf("%lld\n",(C(l+r,r)-C(l+r,r+)+mod)%mod);
}
return ;
}
hdu 5184(数学-卡特兰数)的更多相关文章
- hdu 5184 类卡特兰数+逆元
BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- hdu 4828 Grids 卡特兰数+逆元
Grids Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Problem D ...
- HDOJ 5184 Brackets 卡特兰数扩展
既求从点(0,0)仅仅能向上或者向右而且不穿越y=x到达点(a,b)有多少总走法... 有公式: C(a+b,min(a,b))-C(a+b,min(a,b)-1) /// 折纸法证明卡特兰数: h ...
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【HDU 5184】 Brackets (卡特兰数)
Brackets Problem Description We give the following inductive definition of a “regular brackets” sequ ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
- hdu 4828 Grids(拓展欧几里得+卡特兰数)
题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...
- 【HDU 5370】 Tree Maker(卡特兰数+dp)
Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...
随机推荐
- 【转载】Linux升级NTPD服务器-编译安装ntp-4.2.8p12与配置
[转载]Linux升级NTPD服务器-编译安装ntp-4.2.8p12与配置 1. 系统与软件版本 1.1 系统版本 rhel6.4(Red Hat Enterprise Linux Server r ...
- Android调用Java WebSevice篇之一
一.服务端WebService 1.服务端环境配置 MyEclipse 10.0.Tomcat6.0.JDK6.0. 2.下载axis相关jar包. 3.创建webservice. ...
- clone项目到本地
clone项目到本地 1.然后在本地建立接受代码的文件夹,然后cd 到这个目录 (克隆版本库的时候,所使用的远程主机自动被git命名为origin.如果想用其他的主机名,需要用git clone命令的 ...
- C语言的getopt
By francis_hao Jul 5,2017 getopt:分析命令行选项 概述 #include <unistd.h>int getopt(int argc, char ...
- Spring源码解析-事件
Spring事件的组件 主要是3个组件: 1.ApplicationEvent 事件 2.ApplicationListener 监听器,对事件进行监听 3.ApplicationEventMul ...
- [Usaco2015 dec]Max Flow 树上差分
[Usaco2015 dec]Max Flow Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 353 Solved: 236[Submit][Sta ...
- dbcp基本配置和重连配置
转载自:http://agapple.iteye.com/blog/772507 最近在看一些dbcp的相关内容,顺便做一下记录,免得自己给忘记了. 1. 引入dbcp (选择1.4) Java代码 ...
- 解决设置了background-size: cover; 但是图片在ios下显示不完整的问题
设置 background-size: % 99.9%:
- Struts2 内建的验证规则
Struts2 内建的验证规则 conversion validator:转换验证器 date validator:日期验证器 double validator:浮点验证器 email validat ...
- nginx的常规配置
程序员们,在北上广你还能买房吗? >>> nginx的常规配置 nginx的使用非常简单,只需要配置好我们需要的各种指令,就能跑起来.如果你需要添加模块,还需要添加模块方面的配 ...