poj1840
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 15133 | Accepted: 7426 |
Description
a1x13+ a2x23+ a3x33+ a4x43+
a5x53=0
The coefficients are given integers from the interval
[-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that
verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
a2, a3, a4, a5, separated by blanks.
Output
of the solutions for the given equation.
Sample Input
37 29 41 43 47
Sample Output
654
Source
解题思路:
直观的思路:暴力枚举,O(n^5)
题目Time Limit=5000ms,1ms大约可以执行1000条语句,那么5000ms最多执行500W次
每个变量都有100种可能值,那么暴力枚举,5层循环,就是要执行100^5=100E次,等着TLE吧。。。。
要AC这题,就要对方程做一个变形

即先枚举x1和x2的组合,把所有出现过的 左值 记录打表,然后再枚举x3 x4 x5的组合得到的 右值,如果某个右值等于已经出现的左值,那么我们就得到了一个解
时间复杂度从 O(n^5)降低到 O(n^2+n^3),大约执行100W次
我们先定义一个映射数组hash[],初始化为0
对于方程左边,当x1=m , x2= n时得到sum,则把用hash[]记录sum : hash[sum]++,表示sum这个值出现了1次
之所以是记录“次数”,而不是记录“是否已出现”,
是因为我们不能保证函数的映射为 1对1 映射,更多的是存在 多对1映射。
例如当 a1=a2时,x1=m , x2= n我们得到了sum,但x1=n , x2= m时我们也会得到sum,但是我们说这两个是不同的解,这就是 多对1 的情况了,如果单纯记录sum是否出现过,则会使得 解的个数 减少。
其次,为了使得 搜索sum是否出现 的操作为o(1),我们把sum作为下标,那么hash数组的上界就取决于a1 a2 x1 x2的组合,四个量的极端值均为50
因此上界为 50*50^3+50*50^3=12500000,由于sum也可能为负数,因此我们对hash[]的上界进行扩展,扩展到25000000,当sum<0时,我们令sum+=25000000存储到hash[]
由于数组很大,必须使用全局定义
同时由于数组很大,用int定义必然会MLE,因此要用char或者short定义数组,推荐short
#include<cstdio>
#include<cstring>
using namespace std;
#define N 25000000
#define t 50
int a1,a2,a3,a4,a5;
short hash[N+];
int main(){
while(scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5)==){
memset(hash,,sizeof hash);
for(int x1=-t;x1<=t;x1++){
if(!x1) continue;
for(int x2=-t;x2<=t;x2++){
if(!x2) continue;
int sum=(a1*x1*x1*x1+a2*x2*x2*x2)*(-);
if(sum<) sum+=N;
hash[sum]++;
}
}
int ans=;
for(int x3=-t;x3<=t;x3++){
if(!x3) continue;
for(int x4=-t;x4<=t;x4++){
if(!x4) continue;
for(int x5=-t;x5<=t;x5++){
if(!x5) continue;
int sum=(a3*x3*x3*x3+a4*x4*x4*x4+a5*x5*x5*x5);
if(sum<) sum+=N;
if(hash[sum])
ans+=hash[sum];
}
}
}
printf("%d\n",ans);
}
return ;
}
poj1840的更多相关文章
- POJ1840 hash
POJ1840 问题重述: 给定系数a1,a2, ..,a5,求满足a1 * x1 ^ 3 + a2 * x2 ^ 3 +... + a5 * x5 ^ 3 = 0的 xi 的组数.其中ai, xi都 ...
- POJ-1840 Eqs---二分
题目链接: https://vjudge.net/problem/POJ-1840 题目大意: 给出一个5元3次方程,输入其5个系数,求它的解的个数 其中系数 ai∈[-50,50] 自变量xi∈[ ...
- poj1840 哈希
虽然这题目我曾经在我们学校OJ上做过但是我那时候是用的暴力做的,这次我用的是哈希写的,我写这题目时候开始是在main函数里面写哈希感觉很麻烦很不清晰,然后我换用函数来写,清晰了很多,写完就AC了.用哈 ...
- POJ1840: Eqs(hash问题)
一道典型的hash问题: 已知a1,a2,a3,a4,a5,求有多少种不同的<x1,x2,x3,x4,x5>组合满足等式: a1*x1^3 + a2*x2^3 + a3*x3^3 + a4 ...
- poj1840 Eqs(hash+折半枚举)
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- poj1840 五项式等于0(哈希)
题目传送门 题意很好懂,注意一下xi不能等于0 思路:智商检测题,一开始想着五重for暴力...Orz,后来移向(把a4a5移到右边)了发现减了1e8数量级的复杂度,再次Orz,所以直接三重循环,记录 ...
- POJ1840 Eqs
题意描述 Eqs 求一个五元方程 \(a_1x_1^3+a_2x_2^3+a_3x_3^3+a_4x_4^3+a_5x_5^3=0\) 的解的个数. 题中给出 \(a_i\) 的值并且保证 \(-50 ...
- poj题目
poj2965 poj1753:标准的BFS+位运算优化 poj1328:线段覆盖变种,把圆对应到线段上,贪心求解 poj2109:高精度开根,二分+高精度,注意要判断答案的位数,如果按照题目给的范围 ...
- poj分类 很好很有层次感。
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. ( ...
随机推荐
- org.hibernate.exception.ConstraintViolationException: could not delete:
转自:http://fireinwind.iteye.com/blog/848515 异常描述: org.hibernate.exception.ConstraintViolationExceptio ...
- rails generate model/resource/scaffold的区别
If you’re just learning Ruby on Rails, you may be confused as to when to generate individual models, ...
- angular - 如何运行在起来 - 使用nginx
nginx下载地址,使用的是标准版的: 点击下载nginx nginx下载完后,解压 dist文件夹下面所有angular文件放入html文件夹中. 最后命令行cd到当前nginx.exe目录,启动命 ...
- python——数据结构之单链表的实现
链表的定义: 链表(linked list)是由一组被称为结点的数据元素组成的数据结构,每个结点都包含结点本身的信息和指向下一个结点的地址.由于每个结点都包含了可以链接起来的地址 信息,所以用一个变量 ...
- cookie 与 session 的差别、联系
1.存放位置: Session 存放在server端. Cookie 存放在client: 2.保存形式: Session保存在server的内存中(在server端设置超时时间,与浏览器设置无关): ...
- 如何高效利用github提升自己
作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户,是开发者打开程序开源大门的一扇窗口,也是开发者快速提升自己的一个重要途径.本文将从两个方面介绍github的使用方式. 和逛微博 ...
- FPGA组成、工作原理和开发流程
FPGA组成.工作原理和开发流程 原创 2012年01月07日 09:11:52 9402 0 4 ********************************LoongEmbedded***** ...
- hdu 4821 字符串hash+map判重 String (长春市赛区I题)
http://acm.hdu.edu.cn/showproblem.php?pid=4821 昨晚卡了非常久,開始TLE,然后优化了之后,由于几个地方变量写混.一直狂WA.搞得我昨晚都失眠了,,. 这 ...
- Shell脚本与vi编辑器:vi启动与退出、工作模式、命令大全
Vi简介 Vi是一种广泛存在于各种UNIX和Linux系统中的文本编辑程序. Vi不是排版程序,只是一个纯粹的文本编辑程序. Vi是全屏幕文本编辑器,它没有菜单,只有命令. Vi不是基于窗口的,所以, ...
- Django学习之模板标签和变量
safe过滤器和{% autoescape %}标签 首先看这样一个例子: views.py中: c = '<h3>更上一层楼</h3>' render(request,'te ...