Eqs
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 15133   Accepted: 7426

Description

Consider equations having the following form:
a1x13+ a2x23+ a3x33+ a4x43+
a5x53=0
The coefficients are given integers from the interval
[-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that
verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.

Determine how many solutions satisfy the given equation.

Input

The only line of input contains the 5 coefficients a1,
a2, a3, a4, a5, separated by blanks.

Output

The output will contain on the first line the number
of the solutions for the given equation.

Sample Input

37 29 41 43 47

Sample Output

654

Source

解题思路:

直观的思路:暴力枚举,O(n^5)

题目Time Limit=5000ms,1ms大约可以执行1000条语句,那么5000ms最多执行500W次

每个变量都有100种可能值,那么暴力枚举,5层循环,就是要执行100^5=100E次,等着TLE吧。。。。

要AC这题,就要对方程做一个变形

即先枚举x1和x2的组合,把所有出现过的 左值 记录打表,然后再枚举x3 x4 x5的组合得到的 右值,如果某个右值等于已经出现的左值,那么我们就得到了一个解

时间复杂度从 O(n^5)降低到 O(n^2+n^3),大约执行100W次

我们先定义一个映射数组hash[],初始化为0

对于方程左边,当x1=m  ,  x2= n时得到sum,则把用hash[]记录sum : hash[sum]++,表示sum这个值出现了1次

之所以是记录“次数”,而不是记录“是否已出现”,

是因为我们不能保证函数的映射为 1对1 映射,更多的是存在 多对1映射

例如当 a1=a2时,x1=m  ,  x2= n我们得到了sum,但x1=n  ,  x2= m时我们也会得到sum,但是我们说这两个是不同的解,这就是 多对1 的情况了,如果单纯记录sum是否出现过,则会使得 解的个数 减少。

其次,为了使得 搜索sum是否出现 的操作为o(1),我们把sum作为下标,那么hash数组的上界就取决于a1 a2 x1 x2的组合,四个量的极端值均为50

因此上界为 50*50^3+50*50^3=12500000,由于sum也可能为负数,因此我们对hash[]的上界进行扩展,扩展到25000000,当sum<0时,我们令sum+=25000000存储到hash[]

由于数组很大,必须使用全局定义

同时由于数组很大,用int定义必然会MLE,因此要用char或者short定义数组,推荐short

#include<cstdio>
#include<cstring>
using namespace std;
#define N 25000000
#define t 50
int a1,a2,a3,a4,a5;
short hash[N+];
int main(){
while(scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5)==){
memset(hash,,sizeof hash);
for(int x1=-t;x1<=t;x1++){
if(!x1) continue;
for(int x2=-t;x2<=t;x2++){
if(!x2) continue;
int sum=(a1*x1*x1*x1+a2*x2*x2*x2)*(-);
if(sum<) sum+=N;
hash[sum]++;
}
}
int ans=;
for(int x3=-t;x3<=t;x3++){
if(!x3) continue;
for(int x4=-t;x4<=t;x4++){
if(!x4) continue;
for(int x5=-t;x5<=t;x5++){
if(!x5) continue;
int sum=(a3*x3*x3*x3+a4*x4*x4*x4+a5*x5*x5*x5);
if(sum<) sum+=N;
if(hash[sum])
ans+=hash[sum];
}
}
}
printf("%d\n",ans);
}
return ;
}

poj1840的更多相关文章

  1. POJ1840 hash

    POJ1840 问题重述: 给定系数a1,a2, ..,a5,求满足a1 * x1 ^ 3 + a2 * x2 ^ 3 +... + a5 * x5 ^ 3 = 0的 xi 的组数.其中ai, xi都 ...

  2. POJ-1840 Eqs---二分

    题目链接: https://vjudge.net/problem/POJ-1840 题目大意: 给出一个5元3次方程,输入其5个系数,求它的解的个数 其中系数 ai∈[-50,50]  自变量xi∈[ ...

  3. poj1840 哈希

    虽然这题目我曾经在我们学校OJ上做过但是我那时候是用的暴力做的,这次我用的是哈希写的,我写这题目时候开始是在main函数里面写哈希感觉很麻烦很不清晰,然后我换用函数来写,清晰了很多,写完就AC了.用哈 ...

  4. POJ1840: Eqs(hash问题)

    一道典型的hash问题: 已知a1,a2,a3,a4,a5,求有多少种不同的<x1,x2,x3,x4,x5>组合满足等式: a1*x1^3 + a2*x2^3 + a3*x3^3 + a4 ...

  5. poj1840 Eqs(hash+折半枚举)

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  6. poj1840 五项式等于0(哈希)

    题目传送门 题意很好懂,注意一下xi不能等于0 思路:智商检测题,一开始想着五重for暴力...Orz,后来移向(把a4a5移到右边)了发现减了1e8数量级的复杂度,再次Orz,所以直接三重循环,记录 ...

  7. POJ1840 Eqs

    题意描述 Eqs 求一个五元方程 \(a_1x_1^3+a_2x_2^3+a_3x_3^3+a_4x_4^3+a_5x_5^3=0\) 的解的个数. 题中给出 \(a_i\) 的值并且保证 \(-50 ...

  8. poj题目

    poj2965 poj1753:标准的BFS+位运算优化 poj1328:线段覆盖变种,把圆对应到线段上,贪心求解 poj2109:高精度开根,二分+高精度,注意要判断答案的位数,如果按照题目给的范围 ...

  9. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

随机推荐

  1. Python标准库 (pickle包,cPickle包)

    在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python“一切皆对象”的哲学,在Python中,无论是变量还是函数,都是一个对象.当Python运行时,对象 ...

  2. Ajax库的编写及使用

    ajax使用在服务器端. ajax.js function ajax(url,fnSucc,fnFail) { //1.创建ajax对象 var oAjax = null; if(window.XML ...

  3. 我对GFWed的一些自己的见解

    首先来听听维基百科对GFWed的说明 防火长城(英语:Great Firewall of China.经常使用简称:GFW,中文也称中国国家防火墙或防火长城[1],中国大陆民众俗称防火墙[2].功夫网 ...

  4. 命名空间System.Configuration中不存在类型或命名空间名称ConfigurationManager

    C#连接数据库时.这是个非经常见的错误,我刚開始就直接using System.Configuration;还是没能解决,真相是要手动加入这个程序集的引用,在项目右键加入引用选择System.Conf ...

  5. cassandra的primary key, partition key, cluster key,

    https://stackoverflow.com/questions/24949676/difference-between-partition-key-composite-key-and-clus ...

  6. 收藏 Silverlight中子窗体关闭刷新父窗体(转载)

        public partial class MainPage : UserControl    {        public MainPage()        {            In ...

  7. SpringCloud系列十五:使用Hystrix实现容错

    1. 回顾 上文讲解了容错的重要性,以及容错需要实现的功能. 本文来讲解使用Hystrix实现容错. 2. Hystrix简介 Hystrix是Netflix开源的一个延迟和容错库,用于隔离访问远程系 ...

  8. hiho一下 第四十九周 欧拉路&#183;一

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 小Hi和小Ho近期在玩一个解密类的游戏.他们须要控制角色在一片原始丛林里面探险 ...

  9. ZooKeeper_基础知识学习

    ZooKeeper是Hadoop的开源子项目(Google Chubby的开源实现),它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.命名服务.分布式同步.组服务等. Zookee ...

  10. 使用sklean进行多分类下的二分类

    #coding:utf-8 import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import Lo ...