题目链接:http://poj.org/problem?id=1240

本文链接:http://www.cnblogs.com/Ash-ly/p/5482520.html

题意:

  通过一棵二叉树的中序和后序遍历序列,就可以得到这颗二叉树的前序遍历序列.类似的,也能通过前序和中序遍历序列来得到后序遍历序列.但是,通常来说,不能通过前序和后序遍历序列来确定一棵二叉树的中序遍历序列.如下面这四颗二叉树:

所有的这四颗二叉树都有着相同的前序(abc)和后序遍历(cba)序列.这个现象不仅仅在二叉树中存在,也同时在m叉树中存在.

给你m s1 s2,表示这是一颗m叉树,s1是其前序遍历序列,s2是其后序遍历序列.两个序列中只包含小写字母,且同一字母不会重复出现在同一个序列中.输入0代表输入结束,不做判断.对于每组输入,需要你输出一个数字,表示所给出的前序和后序遍历序列所表示的树一共有多少种可能.答案不会超出32位整形的数据范围.

思路:

  首先对于m叉树的前序遍历序列,第一个字符一定表示这颗m叉树的根,在后序遍历序列中最后一个字符表示m叉树的根.前序遍历序列中的第二个字符x1,一定是m叉树根节点的第一棵子树的根节点,那么在后序遍历序列中,从开始部分到x1的部分一定是m叉树的第一颗子树的后序遍历序列,假设,这部分的个数为n1,那么在前序遍历序列中,从x1开始后的n1个字符一定是m叉树的第一颗子树的前序遍历序列.则在前序遍历序列中截掉这n1个字符以及代表根的字符后,在剩下的序列中,第一个字符x2一定是m叉树的第二棵子树的根节点.在后序遍历序列剩余的部分中,从头到x2的部分即是这第二颗子树的后序遍历序列,设节点个数为n2.那么在前序遍历序列中,从x2开始的n2个字符一定是这m叉树第二颗子树的前序遍历序列.以此类推,对于每棵树的前序和后序遍历序列,可以确定根节点的子节点是哪些,并且能够得到分别以这些子节点为根节点的子树的前序和后序遍历序列,如此的递归下去,可以知道这m叉树的层次结构和节点之间的父子关系以及兄弟节点之间的顺序关系.

  节点之间的关系确定之后,需要确定一共有多少这样的m叉树.首先对于二叉树的情况,当一个根节点只有一个子节点时,这个儿子节点位于左二子或者右儿子的位置都会使得整个二叉树不同.那么类比到m叉树,如果m叉树某一个根节点只有n个子节点,那么这n个节点分别属于哪个树杈都会使得整个树的形状不一样.由于这n个节点的顺序是确定的,相当于把n个点顺序的放到m个位置,则有C(m , n)中放法.对于整棵树来说,树的种数等于每个节点的子节点位置的种数的乘积.

栗子:

13 abejkcfghid jkebfghicda

'a'是这13叉树的根节点,在前序遍历序列中'b'为这13叉树根节点'a'的第一颗子树的根,则在后序遍历序列中从'j'到'b'则为这第一棵子树的后序遍历序列,经计算共有四个节点,那么在前序遍历序列中,从'b'到'k'的这四个字符一定是第一颗子树的前序遍历序列.前序遍历序列中'k'后面的第一个字符'c',一定是这颗13叉树根节点'a'的第二颗子树的根,则在后序遍历序列中从'f'到'c'的五个字符一定是第二棵子树的后序遍历序列,那么在前序遍历序列中,从'c'往后再截取五个字符到'i',则说明这部分为第二棵子树的前序遍历序列.'i'之后的第一个字符'd'则为根节点'a'的第三棵子树的根节点,同样在后序遍历序列中'd'则为第三棵子树的后序遍历序列,在这里则说明第三棵子树只有一个根节点'd'.然后分别对第一颗子树和第二课子树前序以及后序遍历序列进行递归,从而得到子树根节点的子节点的个数以及顺序.由于根节点'a'有'b','c','d'这三个子节点,那么对于13叉树来说要把这三个节点顺序的放到13个位置则为C(13, 3).对于'a'的子节点'b'来说很明显仅有一个子节点'e',所以同样有C(13, 1)种放法,对于'e'节点则有两个子节点'j'和'k',那么种类为C(13, 2).对于'a'的第二个子节点'c'来说有4个子节点'f','g','h'及'i',那么总放法为C(13, 4),所以总的种数位C(13, 3) * C(13, 1) *C(13, 2) * C(13, 4) = 207352860.

代码:

 #include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> using namespace std;
typedef long long LL;
const int maxN = ;
char preord[maxN], enord[maxN];//前序遍历序列 以及 后续遍历序列 LL C(LL n, LL m){//计算组合数
if(m < n - m) m = n - m;
LL ans = ;
for(LL i = m + ; i <= n; i++) ans *= i;
for(LL i = ; i <= n - m; i++) ans /= i;
return ans;
} LL ans;
int n;
void possible(int preleft, int preright, int endleft, int endright){
int cnt = , root = preleft + ;//以preord[preleft]为根节点的第一个子节点preord[root]
while(root <= preright){
int i;
for(i = endleft; i <= endright; i++){//从剩余的后序遍历序列中确定以preord[root]为根节点的子节点个数
if(enord[i] == preord[root])break;
}
int size = i - endleft + ;//size即为preord[root]节点的根节点的个数
possible(root, root + size - , endleft, i);//preord[root~ (root + size - 1)] 为以preord[root]为根节点的子树的前序遍历序列, enord[endleft~i]则为其的后序遍历序列
cnt++; //子节点的个数加1
root += size;//root指向下一个子节点
endleft = i + ; //截掉后序遍历序列中endlft ~ i 的部分
}
ans *= C((LL)n, (LL)cnt);//累乘起来即是答案
} void solv(){
int len = strlen(preord);
possible(, len - , , len - );
printf("%lld\n", ans);
} int main(){
//freopen("input.txt", "r", stdin);
while(~scanf("%d", &n) && n){
memset(preord, , sizeof(preord));
memset(enord, , sizeof(enord));
scanf("%s%s", preord, enord);
ans = ;
solv();
}
return ;
}

POJ 1240 Pre-Post-erous! && East Central North America 2002 (由前序后序遍历序列推出M叉树的种类)的更多相关文章

  1. POJ 1240 Pre-Post-erous! && East Central North America 2002 (由前序后序遍历序列推出M叉树的种类)

    题目链接 问题描述 : We are all familiar with pre-order, in-order and post-order traversals of binary trees. ...

  2. MPI Maelstrom(East Central North America 1996)(poj1502)

    MPI Maelstrom 总时间限制:  1000ms 内存限制:  65536kB 描述 BIT has recently taken delivery of their new supercom ...

  3. poj 2732 Countdown(East Central North America 2005)

    题意:建一个家庭树,找出有第d代子孙的名字,按照要求的第d代子孙的数从大到小输出三个人名,如果有一样大小子孙数的,就按字母序从小到大将同等大小的都输出,如果小于三个人的就全输出. 题目链接:http: ...

  4. Gym-101673 :East Central North America Regional Contest (ECNA 2017)(寒假自训第8场)

    A .Abstract Art 题意:求多个多边形的面积并. 思路:模板题. #include<bits/stdc++.h> using namespace std; typedef lo ...

  5. 2017-2018 ACM-ICPC East Central North America Regional Contest (ECNA 2017) Solution

    A:Abstract Art 题意:给出n个多边形,求n个多边形分别的面积和,以及面积并 思路:模板 #include <bits/stdc++.h> using namespace st ...

  6. East Central North America Region 2015

    E 每过一秒,当前点会把它的值传递给所有相邻点,问t时刻该图的值 #include <iostream> #include <cstdio> #include <algo ...

  7. 2016-2017 ACM-ICPC East Central North America Regional Contest (ECNA 2016) F 区间dp

    Problem F Removal GameBobby Roberts is totally bored in his algorithms class, so he’s developed a li ...

  8. 2014-2015 ACM-ICPC East Central North America Regional Contest (ECNA 2014) A、Continued Fractions 【模拟连分数】

    任意门:http://codeforces.com/gym/100641/attachments Con + tin/(ued + Frac/tions) Time Limit: 3000/1000 ...

  9. East Central North America 2006 Hie with the Pie /// 状压dp oj22470

    题目大意: 输入n,有n个地方(1~n)需要送pizza pizza点为0点 接下来n+1行每行n+1个值 表示 i 到 j 的路径长度 输出从0点到各点送pizza最后回到0点的最短路(点可重复走) ...

随机推荐

  1. AGC016B Colorful Hats(构造)

    题目大意: 给定n和n个数,每个数a[i]代表除了i外序列中颜色不同的数的个数,问能否构造出来这个数列. 比较简单,首先先求出来a数列的最大值Max, 如果有数小于Max-1,那么显然是不存在的 接下 ...

  2. Windows关机过程分析与快速关机

    原文链接:http://blog.csdn.net/flyoxs/article/details/3710367 Windows开机和关机慢,很多时候慢得令人抓狂.特别是做嵌入式开发时(如XPE和Wi ...

  3. oracle的group by问题

    ORA-00979 不是 GROUP BY 表达式”这个错误,和我前面介绍的另外一个错误ORA-00937一样使很多初学oracle的人爱犯的. 我在介绍使用聚合函数中用group by来分组数据时特 ...

  4. 类名.class 类名.this 详解

    我们知道在java中,一个类在被加载的时候虚拟机就会自动的生成一个这个类的一个Class类型的“类对象”,每个类都对应着一个这样的类对象,通过这个Class类型的类对象,我们就能够使用“内省与反射”机 ...

  5. Java Web转发和重定向问题

    0x01:转发情况.转发过程中,只请求一次,request对象设置了之后会一直存在,直到下一次请求. 0x02:重定向情况.会发生两次请求,如果设置了request对象,那么重定向之后,request ...

  6. [洛谷P1074] 靶形数独

    洛谷题目链接:靶形数独 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博 ...

  7. noip车站分级 拓扑排序

    题目传送门 这道题呢 每次输入一段数就把1~n里面没有在这组数里面的数和他们连一波 表示这些数比他们等级低 然后就搞一搞就好了哇 #include<cstdio> #include< ...

  8. 用 letsencrypt 生成 SSL 证书

    letsencrypt 生成 SSL 证书 事先配置好访问域名解析 在nginx 对应虚拟主机添加一个验证区域: 配置 nginx server { listen 80; ... location ~ ...

  9. 【转】vs2015一键卸载干净

    插件是国外的一位同行写的,偶然在网上发现感觉挺好用,分享一下. 第二步.下载工具并解压 网盘下载地址:https://pan.baidu.com/s/1eSHRYxW 也可以在Github上下载最新版 ...

  10. sublime text 2 学习(一):快捷键

    初用sublime text 2,还不错,不装任何插件,能很好的编辑javascript,css,html,很赞.整理一下快捷键:常用的比如Ctrl+S就不列了:而且只列举Windows的. Ctrl ...