HDU 2199 Can you solve this equation? 【浮点数二分求方程解】
Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
Sample Input
2
100
-4
Sample Output
1.6152
No solution!
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const ll LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll quickpow(ll a, ll b) {
ll ans = 0;
while (b > 0) {
if (b % 2)ans = ans * a;
b = b / 2;
a = a * a;
}
return ans;
}
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
}
bool cmp(int a, int b) {
return a > b;
}
int T;
double y;
double ok(double x)
{
return 8*pow(x,4)+7*pow(x,3)+2*pow(x,2)+3*x+6;
}
int main()
{
scanf("%d",&T);
while(T--)
{
int f=0;
scanf("%lf",&y);
if(ok(0)>y||ok(100)<y)
{
printf("No solution!\n");
continue;
}
//int cas = 100;
double l = 0, r = 100.0;
while(r-l>eps)
{
double mid = (l+r)/2.0;
if(ok(mid)>y)
{
r=mid;
}
else l=mid;
}
printf("%.4f\n",l);
}
}
HDU 2199 Can you solve this equation? 【浮点数二分求方程解】的更多相关文章
- hdu 2199 Can you solve this equation?(高精度二分)
http://acm.hdu.edu.cn/howproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/1000 MS ...
- HDU 2199 Can you solve this equation?(二分解方程)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/10 ...
- HDU 2199 Can you solve this equation(二分答案)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- HDU 2199 Can you solve this equation?【二分查找】
解题思路:给出一个方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,求方程的解. 首先判断方程是否有解,因为该函数在实数范围内是连续的,所以只需使y的值满足f(0)< ...
- hdu 2199 Can you solve this equation?(二分法求多项式解)
题意 给Y值,找到多项式 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y 在0到100之间的解. 思路 从0到100,多项式是单调的,故用二分法求解. 代码 double c ...
- HDU 2199 Can you solve this equation?(二分精度)
HDU 2199 Can you solve this equation? Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == ...
- ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分
Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...
- hdu 2199 Can you solve this equation?(二分搜索)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hdu 2199:Can you solve this equation?(二分搜索)
Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 在程序内部跳转到下一个页面 和 向另一个servlet发起跳转
request.getRequestDispatcher("/success.html").forward(request,response); request.getReques ...
- 【bzoj1391】[Ceoi2008]order 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend/p/6796937.html 题目描述 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序 ...
- 【bzoj1180】[CROATIAN2009]OTOCI LCT
题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作: 1.bridge A B:询问结点A与结点B是否连通.如果是则输出“no”.否则输出“yes”,并且在结点 ...
- P1404 平均数
题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n行,每行一个整数a[ ...
- hihocoder 1457(后缀自动机+拓扑排序)
题意 给定若干组由数字构成的字符串,求所有不重复子串的和(把他们看成十进制),答案mod(1e9+7) 题解: 类似后缀数组的做法,把字符串之间用':'连接,这里用':'是因为':'的ascii码恰好 ...
- 【题解】HNOI2016树
大概最近写的这些题目都是仿生的代码……在这里先说明一下.可能比起做题记录来说更加像是学习笔记吧.之所以这样做主要还是因为感受到最近做的很多题目自己会做的都比较简单,不会做的又不敢触及,虽然也有所进步. ...
- 【题解】HAOI2012高速公路
一节政治课的结果……推式子+推式子+推式子…… 首先注意到一个区间里面,选择(x, y)和(y, x)的费用是一样的.所以我们把这两种情况合为一种,那么现在询问的区间为(l, r),则一共的情况就有 ...
- 【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分. 打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/ ...
- C++——派生类中的访问——可见性问题
C++中派生类对基类成员的访问形式主要有以下两种: 1.内部访问:由派生类中新增成员对基类继承来的成员的访问. 2.对象访问:在派生类外部,通过派生类的对象对从基类继承来的成员的访问.今天给大家介绍在 ...
- 【CF MEMSQL 3.0 E. Desk Disorder】
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...