Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solution between 0 and 100;

Now please try your lucky.

Input

The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);

Output

For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.

Sample Input

2

100

-4

Sample Output

1.6152

No solution!

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const ll LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll quickpow(ll a, ll b) {
ll ans = 0;
while (b > 0) {
if (b % 2)ans = ans * a;
b = b / 2;
a = a * a;
}
return ans;
}
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
}
bool cmp(int a, int b) {
return a > b;
}
int T;
double y;
double ok(double x)
{
return 8*pow(x,4)+7*pow(x,3)+2*pow(x,2)+3*x+6;
}
int main()
{
scanf("%d",&T);
while(T--)
{
int f=0;
scanf("%lf",&y);
if(ok(0)>y||ok(100)<y)
{
printf("No solution!\n");
continue;
}
//int cas = 100;
double l = 0, r = 100.0;
while(r-l>eps)
{
double mid = (l+r)/2.0;
if(ok(mid)>y)
{
r=mid;
}
else l=mid;
}
printf("%.4f\n",l);
}
}

HDU 2199 Can you solve this equation? 【浮点数二分求方程解】的更多相关文章

  1. hdu 2199 Can you solve this equation?(高精度二分)

    http://acm.hdu.edu.cn/howproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/1000 MS ...

  2. HDU 2199 Can you solve this equation?(二分解方程)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/10 ...

  3. HDU 2199 Can you solve this equation(二分答案)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  4. HDU 2199 Can you solve this equation?【二分查找】

    解题思路:给出一个方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,求方程的解. 首先判断方程是否有解,因为该函数在实数范围内是连续的,所以只需使y的值满足f(0)< ...

  5. hdu 2199 Can you solve this equation?(二分法求多项式解)

    题意 给Y值,找到多项式 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y 在0到100之间的解. 思路 从0到100,多项式是单调的,故用二分法求解. 代码 double c ...

  6. HDU 2199 Can you solve this equation?(二分精度)

    HDU 2199 Can you solve this equation?     Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == ...

  7. ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分

    Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...

  8. hdu 2199 Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  9. hdu 2199:Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

随机推荐

  1. 【bzoj2049】[Sdoi2008]Cave 洞穴勘测 LCT

    题目描述 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如 ...

  2. P2563 [AHOI2001]质数和分解

    题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式.例如,9 的质数和表达式就有 ...

  3. SRM710 div1 MagicNim(博弈论)

    题目大意: 给出n+1堆石子,前n堆石子的数量是a[i],最后一堆只有1个石子,但是具有魔力 拿走该石子的一方可以选择接下来是进行普通的Nim游戏还是anti-nim游戏 问是先手必胜还是必败 首先拿 ...

  4. 【题解】HNOI2010合唱队

    我果然还是太弱了呜呜呜……洛谷P3205 区间dp:注意到一段区间最两侧的人必然是最后加入队伍的所以由此我们可以分成两种情况来讨论. 一种是最后一个加入的人是左边的,另一种是右边的.那么状态:dp[i ...

  5. [Leetcode] Binary tree maximum path sum求二叉树最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  6. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  7. 【BZOJ 2241 打地鼠】

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1430  Solved: 908[Submit][Status][Discuss] Descripti ...

  8. [bzoj 3224]手写treap

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3224 bzoj不能用time(0),看到这个博客才知道,我也RE了好几发…… #inclu ...

  9. ACM模板~求逆序对的个数

    #include <map> #include <set> #include <cmath> #include <ctime> #include < ...

  10. JavaScript学习笔记——浅拷贝、深拷贝

    参考自:http://www.cnblogs.com/yichengbo/archive/2014/07/10/3835882.html 一.数组的深浅拷贝 在使用JavaScript对数组进行操作的 ...