题目链接

manacher算法:在线性时间内求一个字符串中所有/最长回文串的算法。

先来考虑一下暴力的算法,枚举每个中点,向两边扩展,时间复杂度\(O(n^2)\)。

来分析下此算法的缺点。

1、因为回文串有奇偶之分,所以要分类讨论,\(abba\)的对称轴不在字符上,分类讨论就会有点麻烦。

为此,\(manacher\)算法的解决方案是在每个字符之间插入一个相同的字符,比如说\(\#\),

\(ababa->\#a\#b\#a\#b\#a\#\),这样就不用考虑回文串的奇偶性了。

2、效率低。为什么低?每个位置会被重复遍历。和\(KMP\)算法类似,\(manacher\)也是利用已有信息减少重复无用操作。

比如说\(abacaba\),这是一个回文串,但两边的\(aba\)也都是一个回文串,我们在枚举到右边的\(b\)时就已经能确定已这个\(b\)为中心的回文串的回文半径至少为\(2\),然后直接从这个长度开始拓展就好了。设\(hw[i]\)表示以\(a[i]\)为回文中心的回文半径长度,\(maxright\)表示当前已发现的右端点最右的右端点,\(mid\)表示这个回文串的中心。

则有如下算法(我觉得看代码比看讲解容易懂些)

for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i); //min左边的参数是这个点的对称点的hw值,右边的是保证这个部分在这个大回文串之内
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i]; //拓展
if(hw[i] + i > maxright){ //更新右端点
maxright = hw[i] + i;
mid = i;
}
}

该题完整代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 11000010;
char b[MAXN], a[MAXN << 1];
int hw[MAXN << 1], ans, n;
int main(){
scanf("%s", b);
a[0] = a[1] = '#';
int len = strlen(b);
for(int i = 0; i < len; ++i)
a[(i << 1) + 2] = b[i], a[(i << 1) + 3] = '#';
int maxright = 0, mid; len = (len << 1) + 3;
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];
if(hw[i] + i > maxright){
maxright = hw[i] + i;
mid = i;
}
ans = max(ans, hw[i] - 1);
}
printf("%d\n", ans);
return 0;
}

【洛谷 P3805】 【模板】manacher算法的更多相关文章

  1. 洛谷P3805 [模板]Manacher算法 [manacher]

    题目传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入输出格式 输入格式: 一行小写英文字符a,b,c...y,z组成的字符 ...

  2. 洛谷.3805.[模板]manacher算法

    题目链接 之前做很早了没写这篇,补上. 记录当前ex[]最大的回文中心id和最远延伸范围mx! 关于串的构造: 应该是 @ #A#B#C#B#A# $ ,而不是 @ A#B#C#B#A $ 比如 @a ...

  3. 洛谷 P3805 【模板】manacher算法

    洛谷 P3805 [模板]manacher算法 洛谷传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入格式 一行小写英文字符 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷 P3805【模板】manacher算法

    题目链接:https://www.luogu.com.cn/problem/P3805 Manacher算法$O(n)$: 求以每个字符为中心的最长回文串的半径:如果要求可以以字符间隙为回文中心,就要 ...

  6. [洛谷P3805]【模板】manacher算法

    题目大意:给你一个字符串,求出它的最长回文字段 题解:$manacher$算法 卡点:$p$数组未开两倍空间 C++ Code: #include <cstdio> #include &l ...

  7. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  8. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  9. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

随机推荐

  1. web端常见兼容性问题整理

    一.html和css 各浏览器的默认内外边距不一致问题 最明显的是ul标签内外边距问题,ul标签在IE-7中,有个默认的外边距,但是在IE8以上及其他浏览器中有个默认的内边距. 解决办法:*{marg ...

  2. 30分钟快速搭建Web CRUD的管理平台--django神奇魔法

    加上你的准备的时间,估计30分钟完全够用了,因为最近在做爬虫管理平台,想着快速开发,没想到python web平台下有这么非常方便的框架,简洁而优雅.将自己的一些坑总结出来,方便给大家的使用. 准备环 ...

  3. lessJs

    lessJs下载地址 ======== 简介 lessJs主要提供页面切换,页面管理的一个框架:less-ui.css 和 less-ui.js 是独立于less.js的,他们提供的是一组ui,包括消 ...

  4. zabbix 通过key(键值)获取信息

    在agent端进行修改264行,例如: UserParameter=get.os.type,head -1 /etc/issue 保存重启agent 验证 zabbix_get -s IP -k ge ...

  5. HTML5 本地存储Web Storage简单了解

    ​HTML5本地存储规范,定义了两个重要的API :Web Storage  和  本地数据库Web SQL Database. 本地存储Web Storage 实际上是HTML4的cookie存储机 ...

  6. 01-Mysql数据库----前戏

    MySql的前戏 在学习Mysql之前,我们先来想一下一开始做的登录注册案例,当时我们把用户的信息保存到一个文件中: #用户名 |密码root|123321 alex|123123 上面文件内容的规则 ...

  7. nvm版本管理工具安装

    windows 安装nvm步骤(shi'yongnvm-windows管理node版本): 瞎几把前言:mac上可以用n来管理node版本,私以为n很好用.家里的win7台式机一直没有安装过任何管理工 ...

  8. [leetcode-640-Solve the Equation]

    Solve a given equation and return the value of x in the form of string "x=#value". The equ ...

  9. 在easyUI开发中,出现jquery.easyui.min.js函数库问题

    easyUI是jquery的一个插件,是民间的插件.easyUI使用起来很方便,里面有网页制作的最重要的三大方块:javascript代码.html代码和Css样式.我们在导入easyUI库后,可以直 ...

  10. PAT 1005 继续(3n+1)猜想

    https://pintia.cn/problem-sets/994805260223102976/problems/994805320306507776 卡拉兹(Callatz)猜想已经在1001中 ...