题目链接

戳我

\(Describe\)

题目描述

为了提高智商,\(ZJY\)开始学习线性代数。她的小伙伴菠萝给她出了这样一个问题:给定一个\(n×n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\)。求出一个\(1×n\)的\(01\)矩阵\(A\)。使得\(D=(A*B-C)*A^T\) 最大,其中\(A^T\)为\(A\)的转置。输出\(D\)。

输入格式:

第一行输入一个整数\(n\)。接下来\(n\)行输入\(B\)矩阵,第\(i\)行第\(j\)个数代表\(B\)接下来一行输入\(n\)个整数,代表矩阵\(C\)。矩阵\(B\)和矩阵\(C\)中每个数字都是不过\(1000\)的非负整数

输出格式:

输出一个整数,表示最大的\(D\)。

输入样例:

3

1 2 1

3 1 0

1 2 3

2 3 7

输出样例:

2

\(Solution\)

首先来化简一下式子

\[D=(A*B-C)*A^T
\]

\[=\sum_{i=1}^{n}(\sum_{j=1}^{n}A_j*B_{j,i}-C_i)*A_i
\]

\[=\sum_{i=1}^{n}\sum_{j=1}^{n}A_i*A_j*B_{i,j}-\sum_{i=1}^{n}C_i*A_i
\]

因为题目已经说明了\(A\)是一个\(01\)串,所以我们可以发现当\(A_i\)为\(0\)的时候对答案并没有任何贡献,不用计算。当\(A_i\)为\(1\)时,会有\(C_i\)的花费。但如果同时选\(j\)会有\(B_{i,j}\)的花费.所以这显然是一个最小割模型了。讲1看为选,0为不选

建图:

  • 将每个\(B_{ij}\)看做一个点,总共有\(n*n\)个点。将这\(S\)和这\(n*n\)个点相连,流量为\(B_{i,j}\)
  • 新建\(n\)个点。将这些点和\(T\)相连,流量为\(C_i\)
  • 将\(n*n\)个点和新建节点中的\(i,j\)相连,流量为\(inf\)

答案就是\(B\)矩阵内的和-最小割

\(Code\)

#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
typedef long long ll;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
struct node{
int to,next,v;
}a[2000001];
int head[1000001],cnt,n,m,s,t,x,y,z,dep[260000],sum,cur[260000];
void add(int x,int y,int c){
a[++cnt].to=y,a[cnt].next=head[x],a[cnt].v=c,head[x]=cnt;
a[++cnt].to=x,a[cnt].next=head[y],a[cnt].v=0,head[y]=cnt;
}
queue<int> q;
int bfs(){
memset(dep,0,sizeof(dep));
q.push(s);
dep[s]=1;
while(!q.empty()){
int now=q.front();
q.pop();
for(int i=head[now];i;i=a[i].next){
int v=a[i].to;
if(!dep[v]&&a[i].v>0)
dep[v]=dep[now]+1,q.push(v);
}
}
if(dep[t])
return 1;
return 0;
}
int dfs(int k,int list){
if(k==t||!list)
return list;
for(int &i=cur[k];i;i=a[i].next){
int v=a[i].to;
if(dep[v]==dep[k]+1&&a[i].v>0){
int p=dfs(v,min(list,a[i].v));
if(p){
a[i].v-=p;
i&1?a[i+1].v+=p:a[i-1].v+=p;
return p;
}
}
}
return 0;
}
int Dinic(){
int ans=0,k;
while(bfs()){
for(int i=s;i<=t;i++)
cur[i]=head[i];
while((k=dfs(s,inf)))
ans+=k;
}
return ans;
}
int main(){
n=read(),s=0,t=n*n+n+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
x=read(),sum+=x,add(s,(i-1)*n+j,x),add((i-1)*n+j,i+n*n,inf),add((i-1)*n+j,j+n*n,inf);
for(int i=1;i<=n;i++)
x=read(),add(i+n*n,t,x);
printf("%d\n",sum-Dinic());
}

「TJOI2015」线性代数的更多相关文章

  1. 「TJOI2015」线性代数 解题报告

    「TJOI2015」线性代数 和牛客某题很像 在和里面有\(B_{i,j}\)要求是\(A_i,A_j\)都为\(1\),和里面减去\(C_i\)要求\(A_i\)为\(1\),然后先把贡献也就是\( ...

  2. loj2100 「TJOI2015」线性代数

    先推公式,推出个这,然后因为是 \(0/1\) 矩阵,选一个有损耗,两个一组有加成,就想到了最大权闭合子图,(飞行计划问题) #include <iostream> #include &l ...

  3. 「TJOI2015」概率论 解题报告

    「TJOI2015」概率论 令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数 然后列一个dp \[ f_i=\sum_{j=0}^{i-1} f_j f_{i-j ...

  4. 「TJOI2015」旅游 解题报告

    「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...

  5. 「TJOI2015」组合数学 解题报告

    「TJOI2015」组合数学 这不是个贪心吗? 怎么都最小链覆盖=最大点独立集去了 注意到一个点出度最多只有2,可以贪心一下出度的去向 按读入顺序处理就可以,维护一个\(res_i\)数组,表示上一行 ...

  6. 【LOJ】#2105. 「TJOI2015」概率论

    题解 可以说是什么找规律好题了 但是要推生成函数,非常神奇-- 任何的一切都可以用\(n^2\)dp说起 我们所求即是 所有树的叶子总数/所有树的方案数 我们可以列出一个递推式,设\(g(x)\)为\ ...

  7. 「MoreThanJava」当大学选择了计算机之后应该知道的

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  8. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  9. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

随机推荐

  1. 2012_p1 质因数分解 (prime.cpp/c/pas)

    2012_p1 质因数分解 (prime.cpp/c/pas) 时间限制: 1 Sec  内存限制: 128 MB提交: 80  解决: 27[提交][状态][讨论版][命题人:外部导入] 题目描述 ...

  2. 转:oracle几组重要的常见视图-v$latch,v$latch_children,v$lock,v$locked_object

    v$latch Oracle Rdbms应用了各种不同类型的锁定机制,latch即是其中的一种.Latch是用于保护SGA区中共享数据结构的一种串行化锁定机制.Latch的实现是与操作系统相关的, 尤 ...

  3. 如何准确计算Java对象的大小

    如何准确计算Java对象的大小 原创文章,转载请注明:博客园aprogramer 原文链接:如何准确计算Java对象的大小      有时,我们需要知道Java对象到底占用多少内存,有人通过连续调用两 ...

  4. DFT的补0运算

    在实际的DFT中,如果需要增加采样的密度.这里的采样是频域的采样.可以等到更加密集的谱. 如对于信号 x = [1, 1, 1, 1]做DFT如下图: 不零后的DFT, N = 8, N= 16, N ...

  5. Oray.com花生壳路由器配置注意

    当路由器不链接wan口,只链接lan口时,此路由器其实就是当做一个无线交换机使用了,在此种情况下,花生壳登录会失败,因为花生壳本身也认为这设备不是路由器.

  6. oracle的sqlldr时插入新列和固定数据

    ctl文件加入固定值 region CONSTANT '31', 加入默认时间 RECORD_DATE "sysdate" 最好数据也设置RECORD_DATE的默认值为sysda ...

  7. 聚类 高维聚类 聚类评估标准 EM模型聚类

    高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚 ...

  8. 13-js的面向对象

    创建对象的几种常用的方式 1 . 使用Object或对象字面量创建对象 2 . 工厂模式创建对象 3 . 构造函数模式创建对象 4 . 原型模式创建对象 1 . 使用Object或对象字面量创建对象 ...

  9. Deep Learning(深度学习)学习笔记整理系列

    http://blog.csdn.net/zouxy09/article/details/8775360 http://blog.csdn.net/zouxy09/article/details/87 ...

  10. phpmailer邮件类

    <?php/** * 邮件类 * Enter description here ... * @author df * Mail::getMail()->sendMail(); * */cl ...