BZOJ 4066 kd-tree 矩形询问求和
第一次遇见强制在线的题目 每个操作都和前面的ans有关 所以不能直接离线做
在这个问题中 kdtree更像一个线段树在一维单点修改区间询问的拓展一样
如果区间被询问区间完全包含 就不用继续递归
插入时如果该点已被修改 就不用建新点
由于kdtree是一个二叉搜索树 所以如果数据构造 是可以卡出一条链的 所以需要在插入一定点数之后开始重构这个kdtree 使深度维持在一个可控范围内
因为写错了in_it函数找了一天bug
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<math.h>
#include<queue>
#include<string>
using namespace std;
#define L long long
const int INF = 999999999 ;
const int maxn = 200050 ;
int n , root , cmp_d , m;
struct node {
int d[2] , Max[2] , Min[2] ;
int l , r ;
int sum ;
int z ;
}a[maxn];
int x, y , X;
int x1, x2, y11 ,y2 ;
bool cmp(node a , node b ){return ((a.d[cmp_d] < b.d[cmp_d]) || (a.d[cmp_d] == b.d[cmp_d] && a.d[!cmp_d] < b.d[!cmp_d])) ;}
void up(int p , int k) {
a[p].Max[0] = max(a[p].Max[0] , a[k].Max[0]) ;
a[p].Max[1] = max(a[p].Max[1] , a[k].Max[1]) ;
a[p].Min[0] = min(a[p].Min[0] , a[k].Min[0]) ;
a[p].Min[1] = min(a[p].Min[1] , a[k].Min[1]) ;
a[p].sum += a[k].sum ;
}
int build(int l , int r , int D){
int mid = (l+r) / 2 ;
cmp_d = D;
nth_element(a+1+l,a+1+mid,a+1+r,cmp) ;
a[mid].Max[0] = a[mid].Min[0] = a[mid].d[0] ;
a[mid].Max[1] = a[mid].Min[1] = a[mid].d[1] ;
a[mid].sum = a[mid].z ;
if(l != mid) a[mid].l = build(l,mid-1,D^1) ; else a[mid].l = 0;
if(r != mid) a[mid].r = build(mid+1,r,D^1) ; else a[mid].r = 0;
if(a[mid].l)up(mid,a[mid].l) ;
if(a[mid].r)up(mid,a[mid].r) ;
return mid ;
}
void inse(int x , int y , int X) {
int p = root ;
int D = 0 ;
while(true) {
if(x > a[p].Max[0]) a[p].Max[0] = x ;
if(x < a[p].Min[0]) a[p].Min[0] = x ;
if(y > a[p].Max[1]) a[p].Max[1] = y ;
if(y < a[p].Min[1]) a[p].Min[1] = y ;
a[p].sum += X ;
if(x == a[p].d[0] && y == a[p].d[1]) {
a[p].z += X ;
return ;
}
else {
if(D == 0) {
if(x <= a[p].d[0]) {
if(a[p].l) p = a[p].l ;
else {
n ++ ;
a[n].l = a[n].r = 0 ;
a[n].Max[0] = a[n].Min[0] = a[n].d[0] = x ;
a[n].Min[1] = a[n].Max[1] = a[n].d[1] = y ;
a[n].sum = a[n].z = X ;
a[p].l = n ;
return ;
}
}
else {
if(a[p].r) p = a[p].r ;
else {
n ++ ;
a[n].l = a[n].r = 0 ;
a[n].Max[0] = a[n].Min[0] = a[n].d[0] = x ;
a[n].Min[1] = a[n].Max[1] = a[n].d[1] = y ;
a[n].sum = a[n].z = X ;
a[p].r = n ;
return ;
}
}
}
else {
if(y <= a[p].d[1]) {
if(a[p].l) p = a[p].l ;
else {
n ++ ;
a[n].l = a[n].r = 0 ;
a[n].Max[0] = a[n].Min[0] = a[n].d[0] = x ;
a[n].Min[1] = a[n].Max[1] = a[n].d[1] = y ;
a[n].sum = a[n].z = X ;
a[p].l = n ;
return ;
}
}
else {
if(a[p].r) p = a[p].r ;
else {
n ++ ;
a[n].l = a[n].r = 0 ;
a[n].Max[0] = a[n].Min[0] = a[n].d[0] = x ;
a[n].Min[1] = a[n].Max[1] = a[n].d[1] = y ;
a[n].sum = a[n].z = X ;
a[p].r = n ;
return ;
}
}
}
}
D ^= 1 ;
}
}
bool in_it(int p , int x1,int y11,int x2 , int y2 ){
if(x1 <= a[p].Min[0] && x2 >= a[p].Max[0] && y11 <= a[p].Min[1] && y2 >= a[p].Max[1]) {
return true ;
}
return false ;
}
bool rea_out(int p , int x1 , int y11 , int x2 , int y2 ){
if(x2 < a[p].Min[0] || x1 > a[p].Max[0] || y2 < a[p].Min[1] || y11 > a[p].Max[1]) return true;
return false ;
}
int ans ;
void ask(int p) {
if(rea_out(p , x1 , y11 , x2 , y2)) return ;
if(in_it(p , x1 , y11 , x2 , y2)) {
ans += a[p].sum ;
return ;
}
if(a[p].d[0] >= x1 && a[p].d[0] <= x2 && a[p].d[1] >= y11 && a[p].d[1] <= y2) {
ans += a[p].z ;
}
if(a[p].l){
ask(a[p].l);
}
if(a[p].r){
ask(a[p].r);
}
}
int main(){
scanf("%d",&m);
int op;
int last=0;
n = 0;
while(~scanf("%d",&op)){
if(op == 3)break;
if(op == 1) {
scanf("%d%d%d",&x,&y,&X) ;
x ^= last;
y ^= last;
X ^= last;
if(n == 0) {
n ++ ;
a[n].d[0] = x ; a[n].d[1] = y ;
a[n].z = X ;
a[n].sum = X ;
root = build(1,n,0) ;
}
else {
inse(x,y,X) ;
}
if(n % 5000 == 0) {
root = build(1,n,0) ;
}
}
else {
scanf("%d%d%d%d",&x1,&y11,&x2,&y2) ;
x1 ^= last;
y11 ^= last;
x2 ^= last;
y2 ^= last;
ans = 0;
if(n>0)
ask(root);
else ans = 0 ;
last = ans ;
printf("%d\n",ans) ;
}
}
}
BZOJ 4066 kd-tree 矩形询问求和的更多相关文章
- BZOJ - 4066 KD树 范围计数 暴力重构
题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...
- bzoj 4066: 简单题 K-D树
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=4066 题解 我们把每次的修改操作都当作二维平面上多了一个权值点 对于每组询问可以看做求一 ...
- BZOJ 3489: A simple rmq problem(K-D Tree)
Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 2579 Solved: 888[Submit][Status][Discuss] Descripti ...
- [BZOJ 3221][Codechef FEB13] Obserbing the tree树上询问
[BZOJ 3221]Obserbing the tree树上询问 题目 小N最近在做关于树的题.今天她想了这样一道题,给定一棵N个节点的树,节点按1~N编号,一开始每个节点上的权值都是0,接下来有M ...
- BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )
树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...
- BZOJ 3053: The Closest M Points(K-D Tree)
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1235 Solved: 418[Submit][Status][Discuss] Descripti ...
- BZOJ 4520: [Cqoi2016]K远点对(k-d tree)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1162 Solved: 618[Submit][Status][Discuss] Descripti ...
- BZOJ 1941: [Sdoi2010]Hide and Seek(k-d Tree)
Time Limit: 16 Sec Memory Limit: 162 MBSubmit: 1712 Solved: 932[Submit][Status][Discuss] Descripti ...
- BZOJ 2648: SJY摆棋子(K-D Tree)
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 6051 Solved: 2113[Submit][Status][Discuss] Descript ...
随机推荐
- 《数据结构(C#语言描述)》
本文转载自abatei,数据结构学了很多次,但是只是知道硬性的概念,现在专攻C#语言,对编程语言也有了更深的认识, 买一本C#的数据结构来看看,再一次加深对数据结构的学习,真是一件让人高兴的事. 当当 ...
- kubectl工具的windows安装方法
1.首先安装Chocolatey 参考:https://chocolatey.org/install#install-with-powershellexe windows7+以上操作系统的cmd sh ...
- maven 打包报错
[INFO] Scanning for projects... [INFO] [INFO] ------------------------------------------------------ ...
- Spring整合Velocity模版引擎
1. 首先通过pom.xml自动加载velocity扩展包到工程: <dependency> <groupId>velocity</groupId> <art ...
- 让VisualStudio Profiler捕捉执行的sql语句
启动Profiler之前设置一下Targets的属性就行,图中有说明.
- document write & close
在载入页面后,浏览器输出流自动关闭.在此之后,任何一个对当前页面进行操作的document.write()方法将打开—个新的输出流,它将清除当前页面内容. 必须确保调用document.close() ...
- 实验一中的OOP思想
子类继承父类 父类中声明了接口变量 接口AB中声明了抽象方法 ab 在子类中 可以用这样通俗的语句写程序: while (!(this.termination.shouldTerminate ...
- dataTables.bootstrap 如何显示中文
$('#table_cust').DataTable({ "oLanguage": { "sUrl": "/assets/vendors/page_z ...
- 0401-服务注册与发现、Eureka简介
一.硬编码问题 解决方案:nginx.或.服务注册与发现 二.服务发现 注册.心跳机制 三.服务发现组件的功能 1.服务注册表:是一个记录当前可用服务实例的网络信息的数据库,是服务发现机制的核心.服务 ...
- [转载]MySQL concat函数的使用
MySQL concat函数是MySQL数据库中众多的函数之一,下文将对MySQL concat函数的语法和使用进行说明,供您参考和学习. MySQL concat函数使用方法:CONCAT(str1 ...