Covering(矩阵快速幂)
Bob's school has a big playground, boys and girls always play games here after school.
To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.
Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.
He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n.
Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
Input
There are no more than 5000 test cases.
Each test case only contains one positive integer n in a line.
1≤n≤10181≤n≤1018
Output
For each test cases, output the answer mod 1000000007 in a line.
Sample Input
1
2
Sample Output
1
5
递推公式为F[N]=F[N-1]+5F[n-2]+F[n-3]-F[n-4];
这个题有个坑点,就是在取模之后数值会变小,然后导致系数为-的给减的导致最后的值是-的
这种问题我们的解法是在最后的结果+MOD再取模
学到了
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
#define MOD 1000000007
const int maxn=1e5+5;
typedef long long ll;
using namespace std;
struct mat
{
ll a[5][5];
};
mat Mul(mat a,mat b)
{
mat ans;
memset(ans.a,0,sizeof(ans.a));
for(int t=1;t<=4;t++)
{
for(int j=1;j<=4;j++)
{
for(int k=1;k<=4;k++)
{
ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%MOD;
}
}
}
return ans;
}
mat ans;
ll quickpow(ll n)
{
mat res;
memset(res.a,0,sizeof(res.a));
res.a[1][1]=1;
res.a[1][2]=5;
res.a[1][3]=1;
res.a[1][4]=-1;
res.a[2][1]=1;
res.a[3][2]=1;
res.a[4][3]=1;
while(n)
{
if(n&1)
{
ans=Mul(res,ans);
}
res=Mul(res,res);
n>>=1;
}
return ans.a[1][1];
}
int main()
{
ll n;
while(cin>>n)
{
memset(ans.a,0,sizeof(ans.a));
ans.a[1][1]=36;
ans.a[2][1]=11;
ans.a[3][1]=5;
ans.a[4][1]=1;
if(n==1)
{
printf("1\n");
}
else if(n==2)
{
printf("5\n");
}
else if(n==3)
{
printf("11\n");
}
else if(n==4)
{
printf("36\n");
}
else
{
ll s=quickpow(n-4)+MOD;
printf("%lld\n",(s)%MOD);
}
}
return 0;
}
Covering(矩阵快速幂)的更多相关文章
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...
- HDU-6185-Covering(推递推式+矩阵快速幂)
Covering Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
随机推荐
- validate 不校验的解决办法
最近使用validate.js用于项目的表单校验,调了半天,怎么都不校验,仔细对照例子发现 例子中要校验的文本框除了ID外还有name属性,而我在做的时候没有name属性,到这里终于 看到了希望,把所 ...
- bootstrap设计网站中添加代码高亮插件
这款插件的名字叫做google-code-prettify 使用该插件之前的效果: 使用插件之后的效果: 接下来说步骤: (1)下载两个文件 http://codecloud.sinaapp.com/ ...
- Docker学习笔记_安装和使用nginx
一.软件环境 1.宿主机OS:Win10 64位 2.虚拟机OS:Ubuntu 18.04,虚拟机IP:192.168.8.25 3.Docker安装在虚拟机Ubuntu 18.04上 二.安装过程 ...
- Linux nethack
一.简介 游戏目标:在地下城的最底层取得炎多的护符项链(Amulet of Yendor),并返回最上层,在圣祭坛上供奉给神灵.完成整个游戏的奖赏是,玩家会成为不朽的半神. 二.安装 1)下载源码 ...
- CSS--抽屉(dig.chouti.com)页面
一.设置整体页面宽度 一般写个样式命名为.d{}设置整体页面指定宽度和居中,京东命名为.w{},bootstrap里命名为.container{} 1 2 3 4 5 6 7 8 9 10 11 12 ...
- SEO网站结构优化
结构布局优化:用扁平化结构(层次结构超过三层小蜘蛛就不愿意爬了) 控制首页链接数量(中小网站100以内,页面导航.底部导航.锚文字链接等) 扁平化的目录层次(小蜘蛛跳转3次可以到达网站内任何一个内页, ...
- Linux 查看是64位还是32位
[root@VM_7_88_centos ~]# uname -a Linux VM_7_88_centos 3.10.0-229.el7.x86_64 #1 SMP Fri Mar 6 11:36: ...
- jquery数组拼接
var a=[]; var c=[80,90,70,100] var b={'张三':19,'成绩':c}; a.push(b); console.log("测试案例",a); 同 ...
- 编写高质量代码改善C#程序的157个建议——建议50:在Dispose模式中应区别对待托管资源和非托管资源
建议50:在Dispose模式中应区别对待托管资源和非托管资源 真正资源释放代码的那个虚方法是带一个bool参数的,带这个参数,是因为我们在资源释放时要区别对待托管资源和非托管资源. 提供给调用者调用 ...
- Fragment基本介绍
1.生命周期 onCreateView() :创建视图 onActivityCreate():activity创建完成的时候调用 onDestoryView():销毁视图 onDetach():与ac ...