[题目链接] https://www.luogu.org/problemnew/show/P2257

// luogu-judger-enable-o2
/*
-----------------------
[题解]
https://www.luogu.org/blog/peng-ym/solution-p2257
[莫比乌斯反演]
http://www.cnblogs.com/peng-ym/p/8647856.html
[整除分块]
http://www.cnblogs.com/peng-ym/p/8661118.html
-----------------------
前置:莫比乌斯函数μ(x)为一次质因子的个数,其中μ(1)=1
化简式子中有几个地方很巧妙
1.设f(n)为gcd(i,j)=n的方案数,F(n)=∑{n|d}(f(d))=(N/n)*(M/n)
2.更换枚举项:由枚举 p 到枚举 (d/p) ,总之枚举 μ ,方便算前缀和
3.由枚举 dp 到枚举 T, 根据 μ(d) 有关计算从所有 d 的 p 倍的式子, 转化为根据 μ(T/t) 计算所有有关 T 的式子.
4.程序实现时运用整除分块,即变量在[l,r]内代入式子算得结果一样
-----------------------
written by pengym.
-----------------------2019.2.11
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=1e7+5; int mu[MAXN],prime[MAXN],g[MAXN];
bool vis[MAXN];
LL sum[MAXN],ans;
int n,m,Pcnt,T; inline void init(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++Pcnt]=i;
mu[i]=-1;
}
for(int j=1;j<=Pcnt&&prime[j]*i<=n;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0) break;
else mu[prime[j]*i]=-mu[i];
}
}
prime[0]=1;
for(int j=1;j<=Pcnt;j++)
for(int i=0;i*prime[j]<=n;i++)
g[i*prime[j]]+=mu[i];//对∑(μ)的计算
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+g[i];//前缀和
} int main(){
init(1e7);
T=read();
while(T--){
n=read(),m=read();ans=0;
if(n>m) swap(n,m);
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));//变量在[l,r]内代入式子算得结果一样
ans+=(LL)(n/l)*(m/l)*(sum[r]-sum[l-1]);
//记得加(LL)!!!
}
printf("%lld\n",ans);
}
}

P2257 YY的GCD (莫比乌斯反演)的更多相关文章

  1. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  2. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  3. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  4. P2257 YY的GCD (莫比乌斯反演)

    题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...

  5. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  6. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  7. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  8. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

  9. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  10. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

随机推荐

  1. laravel 队列

    php artisan  queue:table 先创建job 队列表 php artisan migrate 执行表 php artisan make:job SendMessage 创建一个job ...

  2. Codeforces 1120D (树形DP 或 最小生成树)

    题意看这篇博客:https://blog.csdn.net/dreaming__ldx/article/details/88418543 思路看这篇:https://blog.csdn.net/cor ...

  3. Linux查看操作系统版本的几种方式

    Linux查看操作系统版本的几种方式: 1.uname -a 2.lsb_release -a 3.cat /etc/issue 4.cat /proc/version 5.cat /etc/redh ...

  4. Service和IntentService的区别

    不知道大家有没有和我一样,以前做项目或者练习的时候一直都是用Service来处理后台耗时操作,却很少注意到还有个IntentService,前段时间准备面试的时候看到了一篇关于IntentServic ...

  5. 第八课 ROS的空间描述和变换

    1.tf的实际应用 1)在机器人的配置中 从上面可以看出激光雷达中心距离机器人底座的中心有20cm,激光雷达的中心距机器人底座中心有10cm,如果激光雷达在障碍物前面0.3米,那么机器人底座离障碍物多 ...

  6. Oracle——SQL基础

    一.SQL语句分为以下三种类型: DML: Data Manipulation Language 数据操纵语言DDL: Data Definition Language 数据定义语言DCL: Data ...

  7. Spark的job调优(1)

    本文翻译之cloudera的博客,本系列有两篇,第二篇看心情了 概论 当我们理解了transformation,action和rdd后,我们就可以写一些基础的spark的应用了,但是如果需要对应用进行 ...

  8. Robot Framework - 基础关键字 BuiltIn 库(一)

    今天给大家分享的是Robot Framework 机器人框架中 BuiltIn 基础库的使用...BuiltIn 库里面提供了很多基础方法助力于我们在自动化测试领域中做的更好!——本系列教程是教会大家 ...

  9. oracle数据库之分组查询

    本章内容和大家分享的是数据当中的分组查询.分组查询复杂一点的是建立在多张表的查询的基础之上,(我们在上一节课的学习中已经给大家分享了多表查询的使用技巧,大家可以自行访问:多表查询1  多表查询2)而在 ...

  10. 什么是“光照度(Illuminance)”?

    光照度是光度学的概念,了解光照度,要从人眼的特性说起. 人眼的光谱响应 传统的辐射度学的概念(如“功率”,单位为“瓦”)可以客观描述“能量”,但当其用来描述“光照”时却是不合适的,原因在于:人眼对不同 ...