YY的GCD

Time Limit: 10 Sec  Memory Limit: 512 MB
[Submit][Status][Discuss]

Description

  求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对k。

Input

  第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M。

Output

  T行,每行一个整数表示第 i 组数据的结果

Sample Input

  2
  10 10
  100 100

Sample Output

  30
  2791

HINT

  T = 10000
  N, M <= 10000000

Solution

  

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int miu[ONE],sum[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
for(int j=; j<=p_num; j++)
for(int i=; i*prime[j]<=MaxN; i++)
sum[i * prime[j]] += miu[i];
for(int i=; i<=MaxN;i++)
sum[i] += sum[i-];
} void Solve()
{
n=get(); m=get();
if(n > m) swap(n,m);
Ans = ;
for(int i=, j=; i<=n; i=j+)
{
j = min(n/(n/i), m/(m/i));
Ans += (s64) (n/i) * (m/i) * (sum[j] - sum[i-]);
}
printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}

【BZOJ2820】YY的GCD [莫比乌斯反演]的更多相关文章

  1. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  5. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  6. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  7. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. 2016弱校联盟十一专场10.3 We don't wanna work!

    能把 not working now 写成 not working hard now 还查一晚上也是没谁了 我的做法是维护两个set 分别是前20% 和后80% #include<iostrea ...

  2. python基础训练营03——字典、集合、判断、循环

    一.字典dict: 相比列表list而言,列表list像一本书,如果要查书中的某一个内容,需要把书从前往后翻一遍,直到找到想要获取的东西:而字典dict,就像现实中的字典一样,通过查找特定的字或者词( ...

  3. LeetCode 4——两个排序数组中的中位数

    1. 题目 2. 解答 2.1. 方法一 由于两个数组都是排好序的,因此首先可以想到的思路就是利用归并排序把两个数组合并成一个有序的长数组,然后直接取出中位数即可. class Solution: d ...

  4. 图解Transformer

    图解Transformer 前言 Attention这种机制最开始应用于机器翻译的任务中,并且取得了巨大的成就,因而在最近的深度学习模型中受到了大量的关注.在在这个基础上,我们提出一种完全基于Atte ...

  5. Hibernate 查询,返回结果设置到DTO

    1:原生sql的查询,返回结果设置到DTO: Query query = sessionFactoryRtData.getCurrentSession().createSQLQuery(hql.toS ...

  6. C++ 递归读取目录下所有文件

    windows版本 #include <iostream> #include <io.h> #include <fstream> #include <stri ...

  7. Go基础篇【第1篇】: 内置库模块 OS

    os包提供了操作系统函数的不依赖平台的接口.设计为Unix风格的,虽然错误处理是go风格的:失败的调用会返回错误值而非错误码.通常错误值里包含更多信息.os包的接口规定为在所有操作系统中都是一致的.非 ...

  8. POJ 1149 PIGS(最大流)

    Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock an ...

  9. DFS(7)——poj1011Sticks

    一.题目回顾 题目链接:Sticks 题意:给出一定数量的小木棒的长度,它是由等长的若干木棒随意砍断所得到的.对于给定的一组小木棒,请求出原始木棒的最小长度. 二.解题思路 DFS+剪枝 本题剪枝不到 ...

  10. 在fslook

    fslook让我们从内核看文件系统而不是从用户态,从这个工具中发现了很多之前忽略过的点. 1)overlay从内核中看到的文件的ino为什么和用户态stat中看到的ino不是一样的?