题目链接:https://vjudge.net/contest/241341#problem/C

Tree Land Kingdom is a prosperous and lively kingdom. It has N cities which are connected to each other by roads such that there is exactly one path to go from one city to any other city. Each road in the kingdom connects exactly two different cities. Every day a lot of merchants travel from one city to other cities in the kingdom making this kingdom famous for its commerce. The king of this kingdom wonders, which city is the busiest one in his entire kingdom. The busyness of a city is defined as the number of merchants who visits this city on each day. A merchant is considered as visiting c city if and only if city c lies on the path when the merchant travels from city a to city b. Unfortunately, we need a lot of resources and time to answer the king’s question. Therefore, the ministers come up with an idea to approximate the answer so they can provide the king with an “early” answer while they are working on the actual answer. To approximate the answer, the ministers modify the definition of a city’s busyness a bit. The busyness of a city a is now defined as the number of different pair of cities a−b such that c lies in a simple path from a to b (note that c is neither a nor c). A path is considered simple if and only if it does not visit any city more than once. Consider the example as shown in Figure 1 below.
In this example, the busyness of city A, B, E and F are 0 because there is no pair of cities which path visits those nodes. The busyness of city C is 7 (the pairs are: A-B, A-D, A-E, A-F, B-D, B-E, B-F) and the busyness of city D is also 7 (the pairs are: A-E, A-F, B-E, B-F, C-E, C-F, E-F). Therefore, the highest busyness in this example is 7, which occurs in city C and D. Given the kingdom’s road structure, your task is to determine the highest busyness among all cities in the kingdom.
Input The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins with an integer N (3 ≤ N ≤ 20,000) denoting the number of cities in the kingdom. The cities are numbered from 1 to N. The following N −1 lines each contains two integers a and b (1 ≤ a,b ≤ N) denoting a road which connects city a and city b.
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the highest busyness among all cities in the kingdom for that case.
Notes: • Explanation for 1st sample case This sample case corresponds to Figure 1 in the problem statement. • Explanation for 2nd sample case The busiest city is city 2 with busyness of 1 (the pair is: 1-3). • Explanation for 3rd sample case The busiest city is city 2 with busyness of 3 (the pairs are: 1-3, 1-4, 3-4).
Sample Input
4 6 1 3 2 3 3 4 4 5 4 6 3 1 2 2 3 4 1 2 2 3 2 4 7 2 5 1 2 7 4 3 7 2 3 7 6
Sample Output
Case #1: 7 Case #2: 1 Case #3: 3 Case #4: 9

题目大意:输入t,代表t组样例,输入n,接下来有n-1条边,问你一个点被经过的最多次数是多少,如果刚好到该点不算经过,所以叶子节点都算经过0次

个人思路:这道题首先要推出来经过的次数由哪几部分组成:可以把该点看作根,那么就是求它的子树的问题了,该点的次数有两部分组成:

第一部分:该点有n个子树,每个子树的节点数乘以其它子树的总节点数

第二部分:一个子树上的节点之间也有路,所以也要相乘(我这里的算法是多算了一倍,所以要除以2)

看代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
#include<map>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
const int maxn=2e4+;
const int maxk=+;
const int maxx=1e4+;
const ll maxe=+;
#define INF 0x3f3f3f3f3f3f
vector<int>p[maxn];
int Po[maxn];
int ans=,n;
void dfs(int now,int pre)
{
for(int i=;i<p[now].size();i++)
{
int v=p[now][i];
if(v!=pre)
{
dfs(v,now);
Po[now]+=Po[v];//该点除了自己和pre有多少个节点
}
}
int sum1=,sum2=;
sum1=Po[now]*(n--Po[now]);//自己集合的节点数*不属于自己集合的节点数(不包括本身)
for(int i=;i<p[now].size();i++)
{
int v=p[now][i];
if(v!=pre)
{
// sum2+=Po[v]*(p[now].size()-Po[v]);
sum2+=Po[v]*(Po[now]-Po[v]);//自己集合的节点之间也会有路径
}
}
sum2=sum2/;//相当于乘了两遍,所以除以2
if(ans<sum1+sum2)
ans=sum1+sum2;
Po[now]++;//加上自己
}
int main()
{
ios::sync_with_stdio(false);
int t;
int sum=;
cin>>t;
while(t--)
{
for(int i=;i<maxn;i++)
p[i].clear();//每次都要清空
ans=;
memset(Po,,sizeof(Po));
int a,b;
cin>>n;
for(int i=;i<n;i++)
{
cin>>a>>b;
p[a].push_back(b);
p[b].push_back(a);
}
dfs(,);//从第一个节点开始遍历(其实任意一个节点都可以)
printf("Case #%d: %d\n",sum++,ans);
}
return ;
}

UVALive - 6436的更多相关文章

  1. UVALive - 6436、HYSBZ - 2435 (dfs)

    这两道题都是用简单dfs解的,主要是熟悉回溯过程就能做,据说用bfs也能做 道路修建(HYSBZ - 2435) 在 W 星球上有n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道 ...

  2. UVALive - 6436(DFS)

    题目链接:https://vjudge.net/contest/241341#problem/C 题目大意:给你从1到n总共n个数字,同时给你n-1个连接,同时保证任意两个点之间都可以连接.现在假设任 ...

  3. UVALive - 6436 —(DFS+思维)

    题意:n个点连成的生成树(n个点,n-1条边,点与点之间都连通),如果某个点在两点之间的路径上,那这个点的繁荣度就+1,问你在所有点中,最大繁荣度是多少?就比如上面的图中的C点,在A-B,A-D,A- ...

  4. UESTC 2016 Summer Training #6 Div.2

    我好菜啊.. UVALive 6434 给出 n 个数,分成m组,每组的价值为最大值减去最小值,每组至少有1个,如果这一组只有一个数的话,价值为0 问 最小的价值是多少 dp[i][j] 表示将 前 ...

  5. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

  6. UVALive - 3942 Remember the Word[树状数组]

    UVALive - 3942 Remember the Word A potentiometer, or potmeter for short, is an electronic device wit ...

  7. UVALive - 3942 Remember the Word[Trie DP]

    UVALive - 3942 Remember the Word Neal is very curious about combinatorial problems, and now here com ...

  8. 思维 UVALive 3708 Graveyard

    题目传送门 /* 题意:本来有n个雕塑,等间距的分布在圆周上,现在多了m个雕塑,问一共要移动多少距离: 思维题:认为一个雕塑不动,视为坐标0,其他点向最近的点移动,四舍五入判断,比例最后乘会10000 ...

  9. UVALive 6145 Version Controlled IDE(可持久化treap、rope)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

随机推荐

  1. BZOJ1636&&1699:[USACO2007JAN]Balanced Lineup

    浅谈\(RMQ\):https://www.cnblogs.com/AKMer/p/10128219.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...

  2. 洛谷【P1009】阶乘之和

    题目传送门:https://www.luogu.org/problemnew/show/P1009 高精度加法:https://www.cnblogs.com/AKMer/p/9722610.html ...

  3. tar 排除某个目录

    tar -zcvf tomcat.tar.gz --exclude=tomcat/logs --exclude=tomcat/libs tomcat

  4. web安全之同源策略

    为什么使用同源策略?一个重要原因就是对cookie的保护,cookie 中存着sessionID .如果已经登录网站,同时又去了任意其他网站,该网站有恶意JS代码.如果没有同源策略,那么这个网站就能通 ...

  5. 15 Practical Grep Command Examples In Linux / UNIX

    You should get a grip on the Linux grep command. This is part of the on-going 15 Examples series, wh ...

  6. Dexdump 无法正常反编译问题

    WIN环境下无法正常运行,提示Unable open XXX as zip 解决方案:使用APKTOOL + JD-GUI进行替代反编译

  7. ResultSetMetaData和ResultSet

    我现在有一张表t_product;我们查询所有的商品:SELECT * FROM t_product; 上述所有的数据都可以封装成一个对象,我们称这个查询出来的对象为结果集对象:ResultSet. ...

  8. 292C Beautiful IP Addresses

    传送门 题目 The problem uses a simplified TCP/IP address model, please read the statement carefully. An I ...

  9. webAPI中使用FormsAuthenticationTicket作为登录权限票据

    最近在做的项目得到经验,在做登录的时候,使用FormsAuthenticationTicket, 登录成功以后生成cookia作为登录态维护,票据作为调用其他接口的凭据,票据生成后传到前台作为调用接口 ...

  10. pure css简单组件,借鉴bootstrap

    <!doctype html> <html> <head> <meta http-equiv="Content-type" content ...