P3348 [ZJOI2016]大森林(LCT)
对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上。这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\(link\)过去就可以了
求在\(x\)位置的两点之间距离 , 只要之前的换点加点操作完成 , 就可以计算 , 而且也要马上计算 , 之后树的形态就又要变了 , 这样保证了复杂度
关于代码 : 先按思路把离线的事件处理出来
然后发现这种离线的利用虚点的转移只能用\(LCT\)维护
注意 : 只有实点才算\(size\) , 并统计到路径长度中去 , 利用的虚点不算\(size\)
还有\(LCT\)上不\(makeroot\)时求\(LCA\)的求法
注释重构于19.3.29
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int MAXN=3e5+5;
const int MAXM=2e5+5;
struct Query{
int pos,id,x,y;
inline friend bool operator<(Query a,Query b){
if(a.pos==b.pos) return a.id<b.id;
return a.pos<b.pos;
}
}q[MAXM];
int Qcnt,Acnt;
int at[MAXN],L[MAXN],R[MAXN],ans[MAXN];
int n,m,p,aux,real;
namespace LCT{
int ch[MAXN][2],fa[MAXN],size[MAXN],val[MAXN];
int st[MAXN],top;
#define ls (ch[rt][0])
#define rs (ch[rt][1])
inline bool chk(int x){return ch[fa[x]][1]==x;}
inline bool isnotroot(int x){return ch[fa[x]][0]==x||ch[fa[x]][1]==x;}
inline void pushup(int rt){size[rt]=size[ls]+size[rs]+val[rt];}//只要算实点
inline void rotate(int x){
int y=fa[x],z=fa[y],k=chk(x),w=ch[x][k^1];
ch[y][k]=w,fa[w]=y;
if(isnotroot(y)) ch[z][chk(y)]=x; fa[x]=z;
ch[x][k^1]=y,fa[y]=x;
pushup(y);pushup(x);
}
inline void splay(int x){
while(isnotroot(x)){
int y=fa[x];
if(isnotroot(y)){
if(chk(x)==chk(y)) rotate(y);
else rotate(x);
}
rotate(x);
}
}
inline int access(int x){
int y=0;
for(;x;x=fa[y=x])
splay(x),ch[x][1]=y,pushup(x);
return y;//access(y)时最后跳的虚边的父亲就是lca,即最后的y
}
inline void link(int x,int y){
splay(x);//不能makeroot,只能splay
fa[x]=y;//只有根节点才能连边
}
inline void cut(int x){//和它上面的点断开
access(x);splay(x);
ch[x][0]=fa[ch[x][0]]=0;
pushup(x);
}
#undef ls
#undef rs
}using namespace LCT;
int main(){
n=read(),m=read();
real=1,size[1]=1,val[1]=1,at[1]=1,L[1]=1,R[1]=n;//初始时只有1一个实点
link(p=aux=2,1);
for(int i=1;i<=m;i++){
int op=read(),x=read(),y=read();
if(op==0){
link(at[++real]=++p,aux);///新建一个点连到虚点上去,并记录第real个实点在哪(是所有编号中的第几个)
size[p]=1,val[p]=1;//更新val[]!!! (注意只有这样的实点才有权值)
L[real]=x,R[real]=y;
}
if(op==1){
int t=read();
x=max(x,L[t]),y=min(y,R[t]);//有些树还没这个点
if(x>y) continue;
link(++p,aux);///新建一个点连到虚点上去
//size[p]=0,val[p]=0; 虚点没有val[],不算进路径上有size[]个点
//先按思路把离线的事件处理出来
q[++Qcnt]=(Query){x,i-m,p,at[t]};///到了x就把虚点换成这个 -m是为了使换点操作在加点操作前面.
q[++Qcnt]=(Query){y+1,i-m,p,aux};//到了y+1就换回去
aux=p;//更换虚点了!!! 之后的点要放到新点的下面
}
if(op==2) q[++Qcnt]=(Query){x,++Acnt,at[y],at[read()]};//在x位置的两点之间距离,只要之前的换点加点操作完成,就可以计算,而且也要马上计算,之后树的形态就又要变了
}
sort(q+1,q+Qcnt+1);
for(int i=1;i<=Qcnt;i++){
if(q[i].id>0){
int x=q[i].x,y=q[i].y,&sum=ans[q[i].id];
//由于根节点始终为1,不能makeroot后求路径,所以要用到lca.本题中步数=size[x]+size[y]-2*size[lca].
access(x);splay(x);sum+=size[x];
int lca=access(y);splay(y);sum+=size[y];
access(lca);splay(lca);sum-=size[lca]*2;//打起来真的舒服
}
else{ // 这种离线的利用虚点的转移只能用LCT维护
cut(q[i].x);//和它上面的点断开
link(q[i].x,q[i].y);//然后连到新的点上去
}
}
for(int i=1;i<=Acnt;i++)
printf("%d\n",ans[i]);
}
P3348 [ZJOI2016]大森林(LCT)的更多相关文章
- 洛谷P3348 [ZJOI2016]大森林 [LCT]
传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...
- [ZJOI2016]大森林(LCT)
题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...
- P3348 [ZJOI2016]大森林
\(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...
- 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...
- ●洛谷P3348 [ZJOI2016]大森林
题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...
- bzoj 4573: [Zjoi2016]大森林 lct splay
http://www.lydsy.com/JudgeOnline/problem.php?id=4573 http://blog.csdn.net/lych_cys/article/details/5 ...
- P3348 [ZJOI2016]大森林(Link-cut-tree)
传送门 题解 题面大意: \(0.\)区间加节点 \(1.\)区间换根 \(2.\)单点询问距离 如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询 ...
- BZOJ4573:[ZJOI2016]大森林——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...
- [ZJOI2016]大森林
Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...
随机推荐
- x264中重要结构体参数解释,参数设置,函数说明 <转>
x264中重要结构体参数解释http://www.usr.cc/thread-51995-1-3.htmlx264参数设置http://www.usr.cc/thread-51996-1-3.html ...
- Oracle pl/sql 显示游标和隐式游标
显示游标 一.定义语法: CURSOR <游标名> IS <SELECT 语句> [FOR UPDATE | FOR UPDATE ...
- PHP同时连接多个数据库
PHP同时连接多个mysql数据库的具体实现 方法一: <?php $conn1 = mysql_connect("127.0.0.1", "root", ...
- windows下启动命令行
1.当前目录打开命令窗口:shift+鼠标右键,然后打开命令窗口 2.查看监听的端口:netstat – ano
- day17-jdbc 8.ResultSet介绍
但是这些东西在mysql那里有问题.mysql的驱动不是很完善.getClob().getBlob()不好使不是因为程序的问题,而是因为mysql驱动的问题,oracle驱动就没有这个问题,证明ora ...
- 利用powerdesigner创建表模型后导出sql语句方法,以及报错 Generation aborted due to errors detected during the verification of the model.的解决办法
今天用powerdesigner建了表模型,下面先说一下导出sql语句的步骤. 1.选项 2. 然后就报错了,下面说解决办法,很简单. 你没看错,把模型检查的√去掉就行了~~ 导出表名不带双引号的设置 ...
- Linux shell实现阳历转农历
闲来无事,想在Linux下用shell写一个阳历转农历的脚本,断断续续大概一个星期终于搞定.现在拿出来与大家分享. 缘由 本脚本实现原理是查表法(因为公式有误差):基于农历新年为基准,对农历新年前后两 ...
- SDUT 3341 数据结构实验之二叉树二:遍历二叉树
数据结构实验之二叉树二:遍历二叉树 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 已知二叉 ...
- 带参宏定义和inline修饰的内联函数
带参宏定义和inline修饰的内联函数都是在编译时,用函数体替换掉宏调用或函数调用.这样用的好处是减少调用函数所花费的时间. 例如: 算法导论在讲到堆排序时说的,好的堆排序实现一般是把Left(i), ...
- Zinterstore 命令
先来看一下这个命令的定义: Redis Zinterstore 命令计算给定的一个或多个有序集的交集,其中给定 key 的数量必须以 numkeys 参数指定,并将该交集(结果集)储存到 destin ...