Xiao Ming's Hope

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1786    Accepted Submission(s): 1182

Problem Description
Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day 2011.11.11 comes. Seeing classmates walking with their girl friends, he coundn't help running into his classroom, and then opened his maths book preparing to count odd numbers. He looked at his book, then he found a question "C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=?". Of course, Xiao Ming knew the answer, but he didn't care about that , What he wanted to know was that how many odd numbers there were? Then he began to count odd numbers. When n is equal to 1, C(1,0)=C(1,1)=1, there are 2 odd numbers. When n is equal to 2, C(2,0)=C(2,2)=1, there are 2 odd numbers...... Suddenly, he found a girl was watching him counting odd numbers. In order to show his gifts on maths, he wrote several big numbers what n would be equal to, but he found it was impossible to finished his tasks, then he sent a piece of information to you, and wanted you a excellent programmer to help him, he really didn't want to let her down. Can you help him?
 
Input
Each line contains a integer n(1<=n<=108)
 
Output
A single line with the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n).
 
Sample Input
1
2
11
 
Sample Output
2
2
8
 
 

题目大意:给你一个数n,让你求C(n,0)、C(n,1)...C(n,n)这n+1个数中为奇数的个数。

解题思路:用Lucas定理。Lucas定理是用来求 c(n,m) mod p,p是素数的值。我们将n化成二进制串。C(A,B)≡C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[n-2])*...C(a[0]*b[0])%p。这里p是2。如果A为10010。B从0 -> 10010枚举。C(0,1)为0。如果n的二进制串中该位置为0,那么要让C(A,B)%2==1那么,只能让m的二进制对应位置为0,对于n的二进制中为1的位置,m的二进制对应位置为0或1的结果都是1。所以结果就是n的二进制中1的位置取2或1的所有可能。即2^k,k为n的二进制中1的个数。

#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int sum=0;
while(n){
if(n&1)
sum++;
n>>=1;
}
printf("%d\n",(int)pow(2,sum));
}
return 0;
}

  

HDU 4349——Xiao Ming's Hope——————【Lucas定理】的更多相关文章

  1. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  2. HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]

    这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...

  3. hdu 4349 Xiao Ming's Hope lucas

    题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2 ...

  4. HDU 4349 Xiao Ming's Hope 找规律

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...

  5. HDU 4349 Xiao Ming&#39;s Hope

    非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...

  6. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. HDU 4349 Xiao Ming's Hope 组合数学

    题意:给你n,问在C(n,1),C(n,2)...C(n,n)中有多少个奇数. 比赛的时候打表看出规律,这里给一个数学上的说明. Lucas定理:A,B非负整数,p是质数,A,B化为p进制分别为a[n ...

  8. HDU 4349 Xiao Ming's Hope

    有这样一个性质:C(n,m)%p=C(p1,q1)*C(p2,q2).......%p,其中pkpk-1...p1,qkqk-1...q1分别是n,m在p进制下的组成. 就完了. #include&l ...

  9. 数论(Lucas定理) HDOJ 4349 Xiao Ming's Hope

    题目传送门 题意:求C (n,0),C (n,1),C (n,2)...C (n,n)中奇数的个数 分析:Lucas 定理:A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a ...

随机推荐

  1. 转载 MySQL创建表的语句 示例

    show variables like 'character_set_client';#查询字符集 show databases;#列出所有的服务器上的数据库alter create database ...

  2. Java之批处理的实现

    批处理(batch) 一.批处理介绍 1. 批处理指的是一次操作中执行多条SQL语句 2. 批处理相比于一次一次执行效率会提高很多 3. 批处理主要是分两步: 1.将要执行的SQL语句保存 2.执行S ...

  3. Python发送邮件代码

    Python发送带附件的邮件代码 #coding: utf-8 import smtplib import sys import datetime from email.mime.text impor ...

  4. 剑指offer —— 替换空格

    1.问题:请实现一个函数,将一个字符串中的空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 2.思路:可能首先想到的应该就是 ...

  5. php 读取excel文件

    首先下载插件PHPExcel (PHPExcel-1.8),以tp5框架为例,将该文件放在verdor文件夹下.然后引入IOFactory文件. 1.读取文件的部分内容(用于固定格式) public ...

  6. 牛客寒假算法基础集训营4 F Applese 的大奖

    链接:https://ac.nowcoder.com/acm/contest/330/H来源:牛客网 Applese 和它的小伙伴参加了一个促销的抽奖活动,活动的规则如下:有一个随机数生成器,能等概率 ...

  7. 牛客寒假算法基础集训营4 F Applese 的QQ群

    链接:https://ac.nowcoder.com/acm/contest/330/F来源:牛客网 Applese 有一个QQ群.在这个群中,大家互相请教问题.如 b 向 a 请教过问题,就把 a ...

  8. kuangbin专题十六 KMP&&扩展KMP HDU1238 Substrings

    You are given a number of case-sensitive strings of alphabetic characters, find the largest string X ...

  9. Django forum

    Django是比较有名的Python Web框架,很多著名的网站如Instagram就是用的Django.V2EX是一个界面简洁,功能丰富的论坛,最新源码尚未开源.网络上有很多模仿V2EX外观使用其它 ...

  10. C语言值拷贝传递机制

    当参数是常量,变量,或表达式时,传递的数据就是这些数据对象所具有的内容,这种方式称为数值参数传递方式(简称传值方式).如果函数调用时所传递的实参是数据对象在内存中的存储单元的首地址值,这种方式称为地址 ...