SVD实例
>> X = rand(5,7)
X =
0.9797 0.1365 0.6614 0.5828 0.2259 0.2091 0.5678
0.2714 0.0118 0.2844 0.4235 0.5798 0.3798 0.7942
0.2523 0.8939 0.4692 0.5155 0.7604 0.7833 0.0592
0.8757 0.1991 0.0648 0.3340 0.5298 0.6808 0.6029
0.7373 0.2987 0.9883 0.4329 0.6405 0.4611 0.0503
>> [U,S,V] = svd(X)
U =
-0.4577 -0.4718 -0.4059 0.0775 0.6302
-0.3540 -0.2899 0.4478 -0.7626 -0.0921
-0.4681 0.7519 0.2577 0.0364 0.3845
-0.4451 -0.2974 0.4591 0.6288 -0.3276
-0.4979 0.1989 -0.5980 -0.1252 -0.5825
S =
2.8977 0 0 0 0 0 0
0 1.0642 0 0 0 0 0
0 0 0.8453 0 0 0 0
0 0 0 0.5135 0 0 0
0 0 0 0 0.3272 0 0
V =
-0.4899 -0.4371 -0.2957 0.6550 -0.0821 -0.2095 -0.0427
-0.2493 0.5680 0.1100 0.2375 0.5788 -0.3107 0.3393
-0.3948 0.1273 -0.6878 -0.4510 -0.0790 0.1805 0.3355
-0.3528 -0.0220 -0.0232 -0.2011 0.5041 0.2254 -0.7275
-0.4208 0.2507 0.2651 -0.2806 -0.5051 -0.5408 -0.2520
-0.3898 0.2531 0.3832 0.2442 -0.2862 0.6940 0.1184
-0.2975 -0.5854 0.4579 -0.3637 0.2467 -0.0457 0.4047
>> U*S*V'
ans =
0.9797 0.1365 0.6614 0.5828 0.2259 0.2091 0.5678
0.2714 0.0118 0.2844 0.4235 0.5798 0.3798 0.7942
0.2523 0.8939 0.4692 0.5155 0.7604 0.7833 0.0592
0.8757 0.1991 0.0648 0.3340 0.5298 0.6808 0.6029
0.7373 0.2987 0.9883 0.4329 0.6405 0.4611 0.0503
>> S(5,5)=0
S =
2.8977 0 0 0 0 0 0
0 1.0642 0 0 0 0 0
0 0 0.8453 0 0 0 0
0 0 0 0.5135 0 0 0
0 0 0 0 0 0 0
>> U*S*V'
ans =
0.9967 0.0172 0.6777 0.4789 0.3301 0.2681 0.5170
0.2690 0.0292 0.2820 0.4387 0.5646 0.3712 0.8016
0.2627 0.8211 0.4792 0.4521 0.8239 0.8193 0.0281
0.8669 0.2612 0.0563 0.3880 0.4757 0.6502 0.6293
0.7217 0.4090 0.9733 0.5290 0.5443 0.4066 0.0973
>>
SVD实例的更多相关文章
- lapacke svd实例
参考 intel MTK实例 https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_e ...
- 奇异值分解(SVD)和简单图像压缩
SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: ...
- 《学习opencv》笔记——矩阵和图像操作——cvInRange,cvInRangeS,cvInvert and cvMahalonobis
矩阵和图像的操作 (1)cvInRange函数 其结构 void cvInRange(//提取图像中在阈值中间的部分 const CvArr* src,//目标图像 const CvArr* lowe ...
- 最近学习工作流 推荐一个activiti 的教程文档
全文地址:http://www.mossle.com/docs/activiti/ Activiti 5.15 用户手册 Table of Contents 1. 简介 协议 下载 源码 必要的软件 ...
- 奇异值分解(SVD)实例,将不重要的特征值改为0,原X基本保持不变
>> s = rand(5,7) s = 0.4186 0.8381 0.5028 0.1934 0.6979 0.4966 0.6602 0.8462 0.0196 0.7095 ...
- 协同过滤和简单SVD优化
协同过滤(collaborative filtering) 推荐系统: 百度百科的定义是:它是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程主 ...
- paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真 ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
随机推荐
- 正则表达式 匹配符合A表达式切不符合B表达式的字符串
有一道这样的面试题 写一个Java方法,利用正则表达式判断输入str中包含字符串”ios“或”apple“(大小写不敏感),但不包括”mediaplayer“.如果满足条件,返回所包含的字符串”ios ...
- ThinkPHP 3.2.2 事务
手册里说得非常清楚 : 5.3.19 事务支持 ThinkPHP提供了单数据库的事务支持,如果要在应用逻辑中使用事务,可以参考下面的方法: 启动事务: PHP代码 $User->startTra ...
- 用Java实现断点续传的基本思路和代码
用Java实现断点续传的基本思路和代码 URL url = new URL(http://www.oschina.net/no-exist.zip); HttpURLConnection http ...
- Unity Json解析IPA
今天看到一个unity 自带的解析json的IPA,感觉比litjson好用很多,废话不多,上代码 using System.Collections; using System.Collections ...
- tp导出excel
//数据导出 protected function dao($db,$where,$join,$field){ $data = M($db)->join($join)->where($wh ...
- oracle 从select的结果update其他表
update a set a.id=(selelct b.id from temp b where b.line = a.line) where a.line = (select line from ...
- JSP&EL 内置对象
JSP&EL 内置对象 转载▼ 具体的JSP和El中的内置对象见下表,由于我写在了excel中,也不知道怎么把excel发出来,就截了图. 相关问题: Q1: JSP:EL中 pageCo ...
- ThinkPad.E440_安装固态硬盘
1.ThinkPad(E440) 加装SSD固态硬盘,并改装双硬盘_百度经验.html(https://jingyan.baidu.com/article/9f63fb91856ec7c8400f0e ...
- R语言矩阵运算
R语言矩阵运算 主要包括以下内容:创建矩阵向量:矩阵加减,乘积:矩阵的逆:行列式的值:特征值与特征向量:QR分解:奇异值分解:广义逆:backsolve与fowardsolve函数:取矩阵的上下三角元 ...
- delphi完美经典-第16章 Delphi数据库程序设计----使用BDE组件
第16章 Delphi数据库程序设计----使用BDE组件 Delphi访问数据库的方式有:ADO.BDE.dbExpress.InterBase Express. 一.TDataSet组件 虽然De ...