机器学习14—SVD学习笔记
test14.py
#-*- coding:utf-8
import sys
sys.path.append("svdRec.py") import svdRec
from numpy import *
from numpy import linalg as la # U, Sigma, VT = linalg.svd([[1, 1], [7, 7]])
# print(U)
# print(Sigma)
# print(VT) # Data = svdRec.loadExData()
# U, Sigma, VT = linalg.svd(Data)
# print(Sigma)
#
# Sig3 = mat([[Sigma[0], 0, 0], [0, Sigma[1], 0], [0, 0, Sigma[2]]])
# res = U[:, :3]*Sig3*VT[:3, :]
# print("res:")
# print(res)
#
# myMat = mat(svdRec.loadExData())
# ecl = svdRec.ecludSim(myMat[:, 0], myMat[:, 4])
# print("ecl:")
# print(ecl)
# cos = svdRec.cosSim(myMat[:, 0], myMat[:, 4])
# print("cos:")
# print(cos)
# pears = svdRec.pearsSim(myMat[:, 0], myMat[:, 4])
# print("pears:")
# print(pears)
# myMat = mat(svdRec.loadExData())
# myMat[0, 1] = myMat[0, 0] = myMat[1, 0] = myMat[2, 0] = 4
# myMat[3, 3] = 2
# print("myMat:")
# print(myMat)
#
# tuiJian = svdRec.recommend(myMat, 2)
# print("tuiJian:")
# print(tuiJian)
#
# tuiJian1 = svdRec.recommend(myMat, 2, simMeas = svdRec.ecludSim)
# print("tuiJian1:")
# print(tuiJian1)
#
# tuiJian2 = svdRec.recommend(myMat, 2, simMeas = svdRec.pearsSim)
# print("tuiJian2:")
# print(tuiJian2) # myMat = mat(svdRec.loadExData2())
# U, Sigma, VT = la.svd(mat(svdRec.loadExData2()))
# print(Sigma)
#
# Sig2 = Sigma**2
# total = sum(Sig2)
# total9 = total*0.9
# print("total9:")
# print(total9)
#
# total3 = sum(Sig2[:3])
# print("total3:")
# print(total3) # svdRes = svdRec.recommend(myMat, 1, estMethod = svdRec.svdEst)
# print("svdRes:")
# print(svdRes) originalMat = svdRec.imgCompress(2)
print(originalMat) print("over!!!")
svdRec.py
'''
Created on Mar 8, 2011 @author: Peter
'''
from numpy import *
from numpy import linalg as la def loadExData():
return[[0, 0, 0, 2, 2],
[0, 0, 0, 3, 3],
[0, 0, 0, 1, 1],
[1, 1, 1, 0, 0],
[2, 2, 2, 0, 0],
[5, 5, 5, 0, 0],
[1, 1, 1, 0, 0]] def loadExData2():
return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
[0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
[3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
[5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
[0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
[4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
[0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
[0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
[0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]] def ecludSim(inA,inB):
return 1.0/(1.0 + la.norm(inA - inB)) def pearsSim(inA,inB):
if len(inA) < 3 : return 1.0
return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1] def cosSim(inA,inB):
num = float(inA.T*inB)
denom = la.norm(inA)*la.norm(inB)
return 0.5+0.5*(num/denom) def standEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1]
simTotal = 0.0; ratSimTotal = 0.0
for j in range(n):
userRating = dataMat[user,j]
if userRating == 0: continue
# test0 = dataMat[:,item].A>0
# test1 = dataMat[:,j].A>0
# test2 = logical_and(dataMat[:,item].A>0, dataMat[:,j].A>0)
overLap = nonzero(logical_and(dataMat[:,item].A>0, dataMat[:,j].A>0))[0]
if len(overLap) == 0: similarity = 0
else: similarity = simMeas(dataMat[overLap,item], dataMat[overLap,j])
print('the %d and %d similarity is: %f' % (item, j, similarity))
simTotal += similarity
ratSimTotal += similarity * userRating
if simTotal == 0: return 0
else: return ratSimTotal/simTotal def svdEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1]
simTotal = 0.0; ratSimTotal = 0.0
U,Sigma,VT = la.svd(dataMat)
Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items
for j in range(n):
userRating = dataMat[user,j]
if userRating == 0 or j==item: continue
similarity = simMeas(xformedItems[item,:].T, xformedItems[j,:].T)
print('the %d and %d similarity is: %f' % (item, j, similarity))
simTotal += similarity
ratSimTotal += similarity * userRating
if simTotal == 0: return 0
else: return ratSimTotal/simTotal def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
unratedTest = nonzero(dataMat[user,:].A==0)
unratedItems = nonzero(dataMat[user,:].A==0)[1]#find unrated items
if len(unratedItems) == 0: return 'you rated everything'
itemScores = []
for item in unratedItems:
estimatedScore = estMethod(dataMat, user, simMeas, item)
itemScores.append((item, estimatedScore))
# testSort = sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N]
return sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N] def printMat(inMat, thresh=0.8):
for i in range(32):
for k in range(32):
if float(inMat[i,k]) > thresh:
print(1),
else: print(0),
print('') def imgCompress(numSV=3, thresh=0.8):
myl = []
for line in open('0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
myMat = mat(myl)
print("****original matrix******")
printMat(myMat, thresh)
U,Sigma,VT = la.svd(myMat)
SigRecon = mat(zeros((numSV, numSV)))
for k in range(numSV):#construct diagonal matrix from vector
SigRecon[k,k] = Sigma[k]
reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
print("****reconstructed matrix using %d singular values******" % numSV)
printMat(reconMat, thresh)
机器学习14—SVD学习笔记的更多相关文章
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- 《机器学习实战》学习笔记第九章 —— 决策树之CART算法
相关博文: <机器学习实战>学习笔记第三章 —— 决策树 主要内容: 一.CART算法简介 二.分类树 三.回归树 四.构建回归树 五.回归树的剪枝 六.模型树 七.树回归与标准回归的比较 ...
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- 《SAS编程和数据挖掘商业案例》第14部分学习笔记
继续<SAS编程与数据挖掘商业案例>学习笔记系列,本次重点:经常使用全程语句 所谓全程语句.是指能够用在不论什么地方的sas语句,既能够用在data数据步语句里面,也能够用在proc过程步 ...
- MNIST机器学习入门【学习笔记】
平台信息:PC:ubuntu18.04.i5.anaconda2.cuda9.0.cudnn7.0.5.tensorflow1.10.GTX1060 作者:庄泽彬(欢迎转载,请注明作者) 说明:本文是 ...
- 《机器学习实战》学习笔记——第14章 利用SVD简化数据
一. SVD 1. 基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2)优点:简化数据, 去除噪声,提高算法的结果 (3)缺点: ...
- [转]Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)
转自http://blog.csdn.net/c406495762/article/details/75172850 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 一 简 ...
- 林轩田机器学习基石课程学习笔记5 — Training versus Testing
上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...
随机推荐
- 理解css的BFC
BFC是CSS中一个看不见的盒子,(先理解CSS的盒子模型).它的页面渲染方式与普通流的盒子模型不同,它决定了其子元素将如何定位(所用属于BFC的box 都默认左对齐),以及和其他元素的关系和相互作用 ...
- How to not display “Commit point reached - logical record count” counts
You can use the keyword silent, which is available in the options clause. You can set the followin ...
- NOI2016 高中OI生涯的最后一站
你乘坐的航班XXX已经抵达终点站——四川绵阳. “呼——”机舱外的天空灰沉沉的,不禁有些压抑与紧张. 一出机场,就看见南山中学的牌子,黄色衣服的志愿者们,还有热情的老师们. 感觉刚才的情绪又一扫而空了 ...
- Android Developer -- Bluetooth篇 开发实例之三 管理连接
Managing a Connection When you have successfully connected two (or more) devices, each one will have ...
- 解决Eclipse 变量名的自动补全问题
大家使用eclipse敲代码的时候,是不是都被这样一个问题困扰着.就是键入一个变量名的时候,会自动提示补全:在你的变量名后面加上类型的名字!这个时候,你就必须键入Esc才不会自动补全你的变量,如果你键 ...
- 查看tomcat启动文件都干点啥---server对象
在上一章查看tomcat启动文件都干点啥---Catalina.java中说道了构造Server,,这次尝试着说一下Tomcat中Server的内容,首先看一下org.apache.catalina. ...
- sql server 2008 R2 数据库文件大小限制
select @@version SQL2005 分五个版本,如下所列: 1.Enterprise(企业版) 2.Development(开发版) 3.Workgroup,(工作群版) 4.Stand ...
- SSMS查看表行数以及使用空间 How to show table row count and space used in SSMS - SSMS Tutorials
原文:How to show table row count and space used in SSMS - SSMS Tutorials There's a quick and convenien ...
- UIWebView to view self signed websites (No private api, not NSURLConnection) - is it possible?
What it actually does is to intercept the UIWebView to launch a NSURLConnection to allow the server ...
- Xml解析(Dom解析xml)
xml四种解析方式: DOM 平台无关的官方解析方式 优点:形成了树结构,直观好理解,代码更易编写 解析过程中树结构保留在内存中,方便修改 缺点:当xml文件较大时,对内存耗费比较大,容易影响解析性能 ...