ZOJ3553 概率DP
Bloodsucker
In 0th day, there are n-1 people and 1 bloodsucker. Every day, two and only two of them meet. Nothing will happen if they are of the same species, that is, a people meets a people or a bloodsucker meets a bloodsucker. Otherwise, people may be transformed into bloodsucker with probability p. Sooner or later(D days), all people will be turned into bloodsucker. Calculate the mathematical expectation of D.
Input
The number of test cases (T, T ≤ 100) is given in the first line of the input. Each case consists of an integer n and a float number p (1 ≤ n < 100000, 0 < p ≤ 1, accurate to 3 digits after decimal point), separated by spaces.
Output
For each case, you should output the expectation(3 digits after the decimal point) in a single line.
Sample Input
1
2 1
Sample Output
1.000
题意:
开始有一个吸血鬼,n-1个平民百姓。每天一个百姓被感染的概率可求,问每个人都变成吸血鬼的天数期望。
思路:
一般期望题逆推,设dp[i]是目前已经有i个吸血鬼,所有人变成吸血鬼的期望。则dp[n]=0;答案是dp[1];每一个dp[i]的感染概率可求是p[]=2.0*(n-i)*i/(n-1)/n*p;
则可得递推公式: dp[i]=dp[i+1]+1/p[];
代码:
#include"bits/stdc++.h" #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff; db dp[N],P[N];
int t,n,m;
db p;
int main()
{
ci(t);
while(t--){
ci(n),cd(p);
memset(dp,, sizeof(dp));
for(int i=;i<n;i++) P[i]=2.0*p*i*(n-i)/n/(n-);//感染概率
for(int i=n-;i>=;i--) dp[i]=dp[i+]+/P[i];//感染期望
printf("%.3f\n",dp[]);
}
return ;
}
ZOJ3553 概率DP的更多相关文章
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- 概率DP light oj 1030
t组数据 n块黄金 到这里就捡起来 出发点1 到n结束 点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6 如果满6个的话 否则 ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- [转]概率DP总结 by kuangbin
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...
- SGU 422 Fast Typing(概率DP)
题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...
- HDU 4050 wolf5x(动态规划-概率DP)
wolf5x Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
随机推荐
- Oracle数据导入导出imp/exp命令 10g以上expdp/impdp命令
Oracle数据导入导出imp/exp就相当于oracle数据还原与备份.exp命令可以把数据从远程数据库服务器导出到本地的dmp文件,imp命令可以把dmp文件从本地导入到远处的数据库服务器中. 利 ...
- 22 Swap Nodes in Pairs
Given a linked list, swap every two adjacent nodes and return its head. For example,Given 1->2-&g ...
- IOS 弹框AlterView的使用(IOS8.0以前使用)UIAlertController(IOS9.0使用)
#pragma mark - 代理方法 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath ...
- oracle 创建SDO_Geometry表
Oracle Spatial由一坨的对象数据类型,类型方法,操作子,函数与过程组合而成.一个地理对象作为一个SDO_GEOMETRY对象保存在表的一个字段里.空间索引则由普通的DDL和DML语句来建立 ...
- POJ-2151 Check the difficulty of problems---概率DP好题
题目链接: https://vjudge.net/problem/POJ-2151 题目大意: ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 每队至少解出一题且冠军队至少解出N ...
- COGS2287 [HZOI 2015]疯狂的机器人
[题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...
- http协议的发展历史
在最早的时候,第一个定稿的http协议是http/0.9版本,在这个版本里面,http协议,它的内容,非常非常的简单 只有一个命令,就是GET 对应的就是我们现在经常用到的get请求,post请求,这 ...
- vue中多个元素或多个组件之间的动画效果
多个元素的过渡 <style> .v-enter,.v-leave-to{ opacity: 0; } .v-enter-acitve,.v-leave-active{ opacity: ...
- python selenium 下拉框
下拉框的处理如下代码: 定位select有很多种方式,这里介绍两种定位方式 1.二次定位 先定位到下拉框:self.dr.find_element_by_css_selector('#business ...
- 【转】Mac 程序员的十种武器
http://chijianqiang.baijia.baidu.com/article/3733 上 在写 Mac 程序员的十个武器之前,我决定先讲一个故事,关于 Mac 和爱情的.(你们不是问 M ...