题目描述

有n 个连续函数fi (x),其中1 ≤ i ≤ n。对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x 使得fi (x) < fj (x)。对于任何i; j; k,满足1 ≤ i < j < k ≤ n,则不存在x 使得fi (x) = fj (x) = fk (x)。

如上左图就是3 个满足条件的函数,最左边从下往上依次为f1; f2; f3。右图中红色部分是这整个函数图像的最低层,我们称它为第一层。同理绿色部分称为第二层,蓝色部分称为第三层。注意到,右图中第一层左边一段属于f1,中间属于f2,最后属于f3。而第二层左边属于f2,接下来一段属于f1,再接下来一段属于f3,最后属于f2。因此,我们称第一层分为了三段,第二层分为了四段。同理第三层只分为了两段。求满足前面条件的n 个函数,第k 层最少能由多少段组成。

输入输出格式

输入格式:

一行两个整数n; k。

输出格式:

一行一个整数,表示n 个函数第k 层最少能由多少段组成。

输入输出样例

输入样例#1:
复制

1 1
输出样例#1: 复制

1

说明

对于100% 的数据满足1 ≤ k ≤ n ≤ 100。

不太会证明。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 700005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int main(){
//ios::sync_with_stdio(0);
int n, k; cin >> n >> k;
if (n == 1)cout << 1 << endl;
else cout << 2 * (min(k, n - k + 1)) << endl;
return 0;
}

[ZJOI2009]函数 BZOJ1432的更多相关文章

  1. [ZJOI2009]函数 题解

    题目链接:[ZJOI2009]函数 对于$n=1$的情况,直接输出$1$ 对于$n>1$的情况,由于我们可以将图上下反转,所以第$k$层的情况可以被转成第$n-k+1$层 规律自己打个表可以推出 ...

  2. [luogu2591 ZJOI2009] 函数

    传送门 Solution 画图找规律.. Code //By Menteur_Hxy #include <cstdio> #define min(a,b) ((a)>(b)?(b): ...

  3. 【BZOJ1432】[ZJOI2009]Function(找规律)

    [BZOJ1432][ZJOI2009]Function(找规律) 题面 BZOJ 洛谷 题解 这...找找规律吧. #include<iostream> using namespace ...

  4. bzoj千题计划138:bzoj1432: [ZJOI2009]Function

    http://www.lydsy.com/JudgeOnline/problem.php?id=1432 http://blog.sina.com.cn/s/blog_86942b1401014bd2 ...

  5. BZOJ1432 [ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1 H ...

  6. 【构造】Bzoj1432[ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1   ...

  7. BZOJ1432: [ZJOI2009]Function(找规律)

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1523  Solved: 1128[Submit][Status][Discuss] Descriptio ...

  8. bzoj 1432 [ZJOI2009]Function 思想

    [bzoj1432][ZJOI2009]Function Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sampl ...

  9. BZOJ 1432: [ZJOI2009]Function

    1432: [ZJOI2009]Function Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1046  Solved: 765[Submit][Sta ...

随机推荐

  1. jvm调优(二)

    栈内存溢出,主要发生在大数据批量处理的情况,一般解决方案:1.加大栈内存 2.分批处理(用事物,全通过则通过,没有通过则回滚) cpu过高,死锁啊,内存过高啊,i/0问题啊 都可以看 线程栈 jsta ...

  2. 2015.12.14 MDI(多文档窗口结构)设置基本解决,折腾一天,部分解决存在已久的问题。但效果仍不如临时航线的MDI窗体结构。

    创建从一个窗口弹出多个子窗口的结构叫MDI窗体结构 如果不按MDI结构管理,最简单的做法是: 在窗体A上添加菜单或按钮,在菜单或按钮事件中添加弹出B窗体代码: B b = new B(); b.sho ...

  3. 10-17C#语句(3)--跳转语句、异常处理语句

    回顾: 穷举法(重点掌握):虽然运用for...嵌循环语句,但是也要找到执行for...循环的规律, 即一个题目中,需要得到哪个值,首先定义它初始变量:哪个条件需要改变,它对应的就是for...循环的 ...

  4. 监控和安全运维 1.5 nagios监控客户端-1

    3. Nagios安装 - 客户端(192.168.0.12)在客户端机器上 rpm -ivh http://www.aminglinux.com/bbs/data/attachment/forum/ ...

  5. CheckBoxJS选中与反选得到Value

    function XuanZe(val) {    datastr = $("#hid_AID").val();    var newstr = "";    ...

  6. springmvc 类型转换器 自定义类型转换器

    自定义类型转换器的步骤: 1.定义类型转换器 2.类型转换器的注册(在springmvc配置文件处理) 来解决多种日期格式的问题: springmvc 类型转换器 表单数据填错后返回表单页面(接上面的 ...

  7. c语言中argc和argv

    main函数的参数,解释如下: argc:命令行总的参数的个数,即argv中元素的格式. *argv[ ]:字符串数组,用来存放指向你的字符串参数的指针数组,每一个元素指向一个参数. argv[0]: ...

  8. js闭包(二)

    一.何谓“闭包”? 所谓“闭包(Closure)”,指的是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分. 描述的如此学术的官方解释,相信很少人能够 ...

  9. CustomProgressDialog

    1 ,布局文件 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andr ...

  10. day17 9.关闭资源与异常处理

    Java程序跟任何外部设备进行连接之后,都要把连接断开,把资源释放掉.Connection是一个重量级资源,Connecton占内存,Connection的获取是比较消耗资源和内存的.finally是 ...