一、集成学习的思想

  • 集成学习的思路:一个问题(如分类问题),让多种算法参与预测(如下图中的算法都可以解决分类问题),在多个预测结果中,选择出现最多的预测类别做为该样本的最终预测类别;
  • 生活中的集成思维:
  1. 选择电影:10 个人中,如果有8个人觉得这个电影值得看,那么很多人就会跟进这个现象选择看这部电影;

二、scikit-learn 中的集成分类器

  • scikit-learn 中封装的集成分类器:VotingClassifier

 1)模拟集成学习操作

  • 模拟数据集

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets # n_samples=500:表示生成 500 个样本;默认自动生成 100 个样本;
    X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=42) from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
  1. datasets.make_moons(n_samples=500):表示生成 500 个样本;默认自动生成 100 个样本;
  • 使用逻辑回归算法分类器

    from sklearn.linear_model import LogisticRegression
    
    log_clf = LogisticRegression()
    log_clf.fit(X_train, y_train)
    log_clf.score(X_test, y_test)
    # 准确率:0.864
  • 使用 SVM 算法分类器

    from sklearn.svm import SVC
    
    svm_clf = SVC()
    svm_clf.fit(X_train, y_train)
    svm_clf.score(X_test, y_test)
    # 准确率:0.888
  • 使用决策树算法分类器

    from sklearn.tree import DecisionTreeClassifier
    
    dt_clf = DecisionTreeClassifier()
    dt_clf.fit(X_train, y_train)
    dt_clf.score(X_test, y_test)
    # 准确率:0.84
  • 对各个算法预测结果投票
    y_predict1 = log_clf.predict(X_test)
    y_predict2 = svm_clf.predict(X_test)
    y_predict3 = dt_clf.predict(X_test) y_predict = np.array((y_predict1 + y_predict2 + y_predict3) >= 2, dtype='int')
  • 投票方式:
  1. (y_predict1 + y_predict2 + y_predict3) >= 2
  2. 三种算法的预测结果中,只有当 2 个或 3 个的预测结果为 1 时,最终的预测结果才为 1;
  • 查看投票结果的准确率

    from sklearn.metrics import accuracy_score
    
    accuracy_score(y_test, y_predict)
    # 准确率:0.896
  • 采用集成学习思路得到的准确率比其它 3 中算法得到的准确率高;

二、scikit-learn 中的集成分类器

 1)代码

  • from sklearn.ensemble import VotingClassifier
    # 集成分类器 VotingClassifier 的参数:
    # 1)estimators=[]:传入需要使用的算法,放在列表中,使用方式类似管道 Pipeline;
    # 2)voting='hard':表示选择最终预测结果的方式,以出现最多的分类结果作为最终的预测结果;
    # 正常情况下,需要对所选择的算法进行调参;

    voting_clf = VotingClassifier(estimators=[
    ('log_clf', LogisticRegression()),
    ('svm_clf', SVC()),
    ('dt_clf', DecisionTreeClassifier())
    ], voting='hard'
    )

    voting_clf.fit(X_train, y_train)
    voting_clf.score(X_test, y_test)
    # 准确率:0.896
  • 注意
  1. 使用方式如以上红色代码;
  2. 参数 estimators=[ ]:传入需要使用的算法,放在列表中,使用方式类似管道 Pipeline;
  3. 参数 voting='hard':表示选择最终预测结果的方式,以出现最多的分类结果作为最终的预测结果;
  4. 正常情况下,需要对所选择的算法进行调参;

机器学习:集成学习(集成学习思想、scikit-learn 中的集成分类器)的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  3. sklearn中调用集成学习算法

    1.集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常 ...

  4. webService学习之路(三):springMVC集成CXF后调用已知的wsdl接口

    webService学习之路一:讲解了通过传统方式怎么发布及调用webservice webService学习之路二:讲解了SpringMVC和CXF的集成及快速发布webservice 本篇文章将讲 ...

  5. Quartz学习——SSMM(Spring+SpringMVC+Mybatis+Mysql)和Quartz集成详解(转)

    通过前面的学习,你可能大致了解了Quartz,本篇博文为你打开学习SSMM+Quartz的旅程!欢迎上车,开始美好的旅程! 本篇是在SSM框架基础上进行的. 参考文章: 1.Quartz学习——Qua ...

  6. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

  8. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  9. 视觉机器学习读书笔记--------BP学习

    反向传播算法(Back-Propagtion Algorithm)即BP学习属于监督式学习算法,是非常重要的一种人工神经网络学习方法,常被用来训练前馈型多层感知器神经网络. 一.BP学习原理 1.前馈 ...

随机推荐

  1. photoshop cs5 序列号永久序列号永久激活破解方法

    photoshop cs5 序列号永久序列号永久激活破解方法 (2016-12-10 07:52:21) 转载▼ 标签: it   PhotoShop CS5 /ps5  序列号激活码 1330-15 ...

  2. Pytorch的gather用法理解

    先放一张表,可以看成是二维数组 行(列)索引 索引0 索引1 索引2 索引3 索引0 0 1 2 3 索引1 4 5 6 7 索引2 8 9 10 11 索引3 12 13 14 15 看一下下面例子 ...

  3. win10系统下载地址

    Win10正式版微软官方原版ISO系统镜像下载: Win10正式版32位简体中文版(含家庭版.专业版) 文件名: cn_windows_10_multiple_editions_x86_dvd_684 ...

  4. MongoDB快速入门(六)- 更新文档

    更新文档 MongoDB的update()和save()方法用于更新文档到一个集合. update()方法将现有的文档中的值更新,而save()方法使用传递到save()方法的文档替换现有的文档. M ...

  5. 【转载】Android端百度地图API使用详解

    转载地址:http://www.cnblogs.com/rocomp/p/4994110.html 百度地图API简介 百度地图移动版API(Android)是一套基于Android设备的应用程序接口 ...

  6. 微软官网的office外接程序开发

    链接地址:https://msdn.microsoft.com/zh-cn/library/fp161347.aspx

  7. 吴恩达深度学习笔记(七) —— Batch Normalization

    主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会 ...

  8. SQL中的5种常用的聚集函数

    首先你要知道 where->group by->having->order by/limit  ,这个就是写sql语句时的顺序  常用的5个聚集函数: Max             ...

  9. R语言学习笔记(4)

    第四章:基本数据管理 一 贯穿整章的示例 二 变量的创建.重编码和重命名 三 日期值与缺失值 四 数据类型和类型转换 五 数据集的排序.合并与取子集 一 贯穿整章的示例(leadership)  ,, ...

  10. 实例说明Java中的null(转)

    让我们先来看下面的语句: String x = null; 1. 这个语句到底做了些什么?  让我们回顾一下什么是变量,什么是变量值.一个常见的比喻是 变量相当于一个盒子.如同可以使用盒子来储存物品一 ...