题目

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

输入格式

数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。

第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t

输出格式

只有一行,包含一个整数,为最少花费。

输入样例

5 6 1

0 4

0 1 5

1 2 5

2 3 5

3 4 5

2 3 3

0 2 100

输出样例

8

提示

对于30%的数据,2<=n<=50,1<=m<=300,k=0;

对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;

对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.

题解

就是一个分层图,按剩余免费次数分10层,每次转移可以考虑使用和不使用免费次数,跑一遍SPFA即可【8s险过

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 0,N,M,K,S,T,d[11][maxn],inq[11][maxn];
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
struct node{int k,u;};
queue<node> q;
void SPFA(){
fill(d[0],d[0] + 11 * maxn,INF);
node u; int to;
q.push((node){K,S}); d[K][S] = 0;
while (!q.empty()){
u = q.front(); q.pop();
inq[u.k][u.u] = false;
Redge(u.u){
to = ed[k].to;
if (d[u.k][to] > d[u.k][u.u] + ed[k].w){
d[u.k][to] = d[u.k][u.u] + ed[k].w;
if (!inq[u.k][to]) q.push((node){u.k,to}),inq[u.k][to] = true;
}
if (u.k && d[u.k - 1][to] > d[u.k][u.u]){
d[u.k - 1][to] = d[u.k][u.u];
if (!inq[u.k - 1][to]) q.push((node){u.k - 1,to}),inq[u.k - 1][to] = true;
}
}
}
int ans = INF;
for (int i = 0; i <= K; i++) ans = min(ans,d[i][T]);
printf("%d",ans);
}
int main(){
memset(h,-1,sizeof(h));
N = RD(); M = RD(); K = RD(); S = RD() + 1; T = RD() + 1; int a,b,w;
while (M--) a = RD() + 1,b = RD() + 1,w = RD(),build(a,b,w);
SPFA();
return 0;
}

BZOJ2763 [JLOI2011]飞行路线 【分层图 + 最短路】的更多相关文章

  1. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  2. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  3. [bzoj2763][JLOI2011]飞行路线——分层图最短路

    水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...

  4. bzoj2763 [JLOI]飞行路线 分层图最短路

    问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  5. bzoj2763: [JLOI2011]飞行路线(分层图spfa)

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3234  Solved: 1235[Submit][Stat ...

  6. [JLOI2011]飞行路线 分层图最短路

    题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...

  7. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  8. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  9. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  10. bzoj2763 [JLOI2011]飞行路线——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 构建分层图. 代码如下: 写法1(空间略大)(时间很慢): #include<i ...

随机推荐

  1. JavaScript编码加密

    网上看到的加密方法: JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:unescape,deco ...

  2. 关于IT人的一些消遣区

    https://www.csdn.net/http://www.51cto.com/http://bestcbooks.com/http://www.jobbole.com/http://www.co ...

  3. 事件监听和window.history以及自定义创建事件

    1.事件监听window.addEventListener方法: Window.addEventListener(event, function, useCapture); useCapture:表示 ...

  4. #Python编程从入门到实践#第三章笔记

      列表简介 ​​​1.什么是列表 列表:由一系列按也顶顺序排列的元素组成.元素之间可以没有任何关系. 列表:用方括号[]表示,并用逗号分隔其中元素.名称一般为复数 2.访问元素 (1)列表是有序集合 ...

  5. 状压DP详解(位运算)

    前言: 状压DP是一种非常暴力的做法(有一些可以排除某些状态的除外),例如dp[S][v]中,S可以代表已经访问过的顶点的集合,v可以代表当前所在的顶点为v.S代表的就是一种状态(二进制表示),比如 ...

  6. Java实现系统目录实时监听更新。

    SDK1.7新增的nio WatchService能完美解决这个问题.美中不足是如果部署在window系统下会出现莫名其妙的文件夹占用异常导致子目录监听失效,linux下则完美运行.这个问题着实让人头 ...

  7. Python 探测图片文件类型

    Table of Contents 1. 探测图片类型 1.1. python magic 1.2. imghdr 1.3. PIL.Image 探测图片类型 今天遇到一个小问题,如何探测图片的文件类 ...

  8. TouTiao开源项目 分析笔记15 新闻详情之两种类型的实现

    1.预览效果 1.1.首先看一下需要实现的效果. 第一种,文字类型新闻. 第二种,图片类型新闻. 1.2.在NewsArticleTextViewBinder中设置了点击事件 RxView.click ...

  9. Kettle资源库配置(数据库资源库和文件资源库)

    一>文件资源库配置 1. 建立文件资源库:点击工具->资源库->连接资源库菜单 使用文件资源库不需要用户名和密码,如果没有资源库可以点击右上角的"+"新建资源库, ...

  10. 6,Flask 中内置的 Session

    Flask中的Session非常的奇怪,他会将你的SessionID存放在客户端的Cookie中,使用起来也非常的奇怪 1. Flask 中 session 是需要 secret_key 的 from ...