一只猪走进了一个森林。很凑巧的是,这个森林的形状是长方形的,有n行,m列组成。我们把这个长方形的行从上到下标记为1到n,列从左到右标记为1到m。处于第r行第c列的格子用(r,c)表示。

刚开始的时候猪站在(1,1),他的目标是走到(n,m)。由于猪回家心切,他在(r,c)的时候,只会往(r+1,c)或(r,c+1)走。他不能走出这个森林。

这只猪所在的森林是一个非同寻常的森林。有一些格子看起来非常相似,而有一些相差非常巨大。猪在行走的过程中喜欢拍下他经过的每一个格子的照片。一条路径被认为是漂亮的当且仅当拍下来的照片序列顺着看和反着看是一样的。也就是说,猪经过的路径要构成一个回文。

数一数从(1,1)到(n,m)有多少条漂亮路径。答案可能非常巨大,请输出对 109+7 取余后的结果。

样例解释:有三种可能

  

Input
单组测试数据。
第一行有两个整数 n,m (1≤n,m≤500),表示森林的长和宽。
接下来有n行,每行有m个小写字母,表示每一个格子的类型。同一种类型用同一个字母表示,不同的类型用不同的字母表示。
Output
输出答案占一行。
Input示例
3 4
aaab
baaa
abba
Output示例
3

这就是道Dp题 和之前1的传纸条有点像 但这个是一个从(1,1)出发 一个从(n,m)出发
f【i】【j】【k】表示一个点到(i,j)另一个到(k,l)
l可以从另外三个数推出来 因为两个点所走的路程一定一样
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int mod=1e9+;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
char s[M][M];
int f[][M][M],now=,last=;
int h,n,m,ans;
int main()
{
n=read(); m=read(); h=(n+m)>>;
for(int i=;i<=n;i++) scanf("%s",s[i]+);
if(s[][]!=s[n][m]){printf("0\n"); return ;}
f[][][n]=;
for(int i=;i<=n;i++){
for(int j=;j<=(h-i+);j++){
for(int k=n;k>=max(,n-i-j+);k--){
int l=n+m-i-j-k+;
if(s[i][j]!=s[k][l]) continue;
(f[now][j][k]+=f[last][j][k])%=mod;
(f[now][j][k]+=f[last][j][k+])%=mod;
(f[now][j][k]+=f[now][j-][k+])%=mod;
(f[now][j][k]+=f[now][j-][k])%=mod;
if((i==k&&j==l)||(i==k&&j+==l)||(i+==k&&j==l)) (ans+=f[now][j][k])%=mod;
}
}
memset(f[last],,sizeof(f[last]));
swap(last,now);
}printf("%d\n",ans);
return ;
}
 

codeforce 570 problem E&& 51Nod-1503-猪和回文的更多相关文章

  1. 51Nod 1503 猪和回文

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1503 思路: 没想到要用DP去解决. 题目是从起点出发走,我们可以从起点 ...

  2. 51nod 1503 猪和回文(dp滚存)

    题面 大意:在一个n*m的矩形中从(1,1)走到(n,m)而且走过的路径是一条回文串,统计方案数 sol:我们考虑从(1,1)和(n,m)两端开始算,这样就只要保证每次经过的字符一样就可以满足回文了, ...

  3. 51nod 1503 猪和回文(多线程DP)

    虚拟两个点,一个从左上角开始走,一个从右下角开始走,定义dp[i][j][k]表示走了i步后,第一个点横向走了j步,第二个点横向走了k步后形成的回文方法种数. 转移方程显然可得,然后滚动数组搞一搞. ...

  4. 1503 猪和回文(DP)

    1503 猪和回文 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一只猪走进了一个森林.很凑巧的是,这个森林的形状是长方形的,有 ...

  5. UVALive - 7041 The Problem to Slow Down You (回文树)

    https://vjudge.net/problem/UVALive-7041 题意 给出两个仅包含小写字符的字符串 A 和 B : 求:对于 A 中的每个回文子串,B 中和该子串相同的子串个数的总和 ...

  6. UVAlive 7041 The Problem to Slow Down You(回文树)

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  7. [51nod1503]猪和回文 DP

    ---题面--- 题解: 首先观察到题目要求的是合法回文串的个数,而回文串要求从前往后和从后往前是一样的,因此我们假设有两只猪,分别从左上和右下开始走,走相同的步数最后相遇,那么它们走的路能拼在一起构 ...

  8. 51Nod 1089 最长回文子串 V2 —— Manacher算法

    题目链接:https://vjudge.net/problem/51Nod-1089 1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值:  ...

  9. 51nod-1503 猪和回文 - 二维矩阵上的dp

    题目链接 一只猪走进了一个森林.很凑巧的是,这个森林的形状是长方形的,有n行,m列组成.我们把这个长方形的行从上到下标记为1到n,列从左到右标记为1到m.处于第r行第c列的格子用(r,c)表示. 刚开 ...

随机推荐

  1. oracle11g导出表时空表导不出解决方案

    oracle11g用exp命令导出数据库表时,有时会发现只导出了一部分表时而且不会报错,原因是有空表没有进行导出,之前一直没有找到方法于是用最笨的方法重新建这些空表,当然在我们实际当中表的数量大时我们 ...

  2. 【文件处理】xml 文件 SAX解析

    SAX的全称是Simple APIs for XML,也即XML简单应用程序接口. 与DOM不同,SAX提供的访问模式是一种顺序模式,这是一种快速读写XML数据的方式. 当使用SAX分析器对XML文档 ...

  3. Json的用处一

    今天,我们用到了json的的用处,其实也就是一个很简单的用处,就是点击一个按钮,触发一个事件,然后调用json, 之后我们就可以进行异步操作,其实只是针对于后台的操作,其实我们并没有对数据库进行刷新, ...

  4. kettle入门(三) 之kettle连接hadoop&hdfs图文详解(转)

    1 引言: 项目最近要引入大数据技术,使用其处理加工日上网话单数据,需要kettle把源系统的文本数据load到hadoop环境中 2 准备工作: 1 首先 要了解支持hadoop的Kettle版本情 ...

  5. 一步一步学Linq to sql(一):预备知识

    什么是Linq to sql Linq to sql(或者叫DLINQ)是LINQ(.NET语言集成查询)的一部分,全称基于关系数据的 .NET 语言集成查询,用于以对象形式管理关系数据,并提供了丰富 ...

  6. RSA 加解密算法详解

    RSA 为"非对称加密算法".也就是加密和解密用的密钥不同. (1)乙方生成两把密钥(公钥和私钥).公钥是公开的,任何人都可以获得,私钥则是保密的. (2)甲方获取乙方的公钥,然后 ...

  7. luogu2221 [HAOI2012]高速公路

    和sdoi的相关分析很像qwq,推柿子然后线段树搞搞 #include <iostream> #include <cstdio> using namespace std; ty ...

  8. 网易OpenStack部署运维实战

    OpenStack自2010年项目成立以来,已经有超过200个公司加入了 OpenStack 项目,目前参与 OpenStack 项目的开发人员有 17,000+,而且这些数字还在增加,作为一个开源的 ...

  9. WIN8、WIN7访问Windows Server 2003服务器的数据库速度很慢、远程速度很慢的解决方法

    原因是微软在WIN7开始上加入了网络速度限制.在控制台执行以下命令即可解决: netsh interface tcp set global autotuninglevel=disabled

  10. dynamic基元类型与隐式类型的局部变量var

    dynamic代码示例 using System; using System.Collections.Generic; using System.Linq; using System.Text; na ...