题面简洁明了,一看就懂

做了这个题之后,才知道怎么用线段树维护递推式。递推式的递推过程可以看作两个矩阵相乘,假设矩阵A是初始值矩阵,矩阵B是变换矩阵,求第n项相当于把矩阵B乘了n - 1次。

那么我们线段树中每个点维护把矩阵B乘了多少次,懒标记下放的时候用快速幂维护sum。

#include <bits/stdc++.h>
#define LL long long
#define ls(x) (x << 1)
#define rs(x) ((x << 1) | 1)
using namespace std;
const LL mod = 1000000007;
const int maxn = 100010;
struct Matrix {
static const int len = 2;
LL x[len][len]; void init() {
memset(x, 0, sizeof(x));
for (int i = 0; i < len; i++)
x[i][i] = 1;
} void zero() {
memset(x, 0, sizeof(x));
} Matrix operator * (const Matrix& m) const {
Matrix ans;
ans.zero();
for (int i = 0; i < len; i++)
for (int j = 0; j < len; j++)
for (int k = 0; k < len; k++)
ans.x[i][j] = (ans.x[i][j] + x[i][k] * m.x[k][j]) % mod;
return ans;
} Matrix operator + (const Matrix& m) const {
Matrix ans;
ans.zero();
for (int i = 0; i < len; i++)
for (int j = 0; j < len; j++)
ans.x[i][j] = (x[i][j] + m.x[i][j]) % mod;
return ans;
} Matrix operator ^ (int b) const {
Matrix ans, a;
ans.init();
memcpy(a.x, x, sizeof(x));
for (; b; b >>= 1) {
if(b & 1) ans = ans * a;
a = a * a;
}
return ans;
}
}; Matrix mul , tmp, trans ;
int a[maxn];
struct SegementTree {
int lz;
Matrix sum, flag;
}; SegementTree tr[maxn * 4]; void maintain(int o) {
tr[o].sum = tr[ls(o)].sum + tr[rs(o)].sum;
} void pushdown(int o) {
if(tr[o].lz) {
tr[ls(o)].sum = tr[ls(o)].sum * tr[o].flag;
tr[rs(o)].sum = tr[rs(o)].sum * tr[o].flag;
tr[ls(o)].flag = tr[ls(o)].flag * tr[o].flag;
tr[rs(o)].flag = tr[rs(o)].flag * tr[o].flag;
tr[o].lz = 0;
tr[ls(o)].lz = 1;
tr[rs(o)].lz = 1;
tr[o].flag.init();
}
} void build(int o, int l, int r) {
tr[o].sum.zero();
tr[o].lz = 0;
tr[o].flag.init();
if(l == r) {
tr[o].sum = trans * ( mul ^ (a[l] - 1));
return;
}
int mid = (l + r) >> 1;
build(ls(o), l, mid);
build(rs(o), mid + 1, r);
maintain(o);
} void update(int o, int l, int r, int ql, int qr, Matrix now) {
if(l >= ql && r <= qr) {
tr[o].sum = tr[o].sum * now;
tr[o].flag = tr[o].flag * now;
tr[o].lz = 1;
return;
}
pushdown(o);
int mid = (l + r) >> 1;
if(ql <= mid) update(ls(o), l, mid, ql, qr, now);
if(qr > mid) update(rs(o), mid + 1, r, ql, qr, now);
maintain(o);
} LL query(int o, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) {
return tr[o].sum.x[0][1];
}
pushdown(o);
int mid = (l + r) >> 1;
LL ans = 0;
if(ql <= mid) ans = (ans + query(ls(o), l, mid, ql, qr)) % mod;
if(qr > mid) ans = (ans + query(rs(o), mid + 1, r, ql, qr)) % mod;
return ans;
} int main() {
int n, m, op, l, r;
LL x;
trans.zero();
trans.x[0][1] = 1;
mul.x[0][1] = mul.x[1][0] = mul.x[1][1] = 1;
mul.x[0][0] = 0;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
build(1, 1, n);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &op, &l, &r);
if(op == 1) {
scanf("%lld", &x);
tmp = (mul ^ x);
update(1, 1, n, l, r, tmp);
} else {
printf("%lld\n", query(1, 1, n, l, r));
}
}
}

  

Codeforces 719E (线段树教做人系列) 线段树维护矩阵的更多相关文章

  1. Codeforces 1136E Nastya Hasn't Written a Legend (线段树教做人系列)

    题意:有一个数组a和一个数组k,数组a一直保持一个性质:a[i + 1] >= a[i] + k[i].有两种操作:1,给某个元素加上x,但是加上之后要保持数组a的性质.比如a[i]加上x之后, ...

  2. 线段树教做人系列(2)HDU 4867 XOR

    题意:给你一个数组a,长度为.有两种操作.一种是改变数组的某个元素的值,一种是满足某种条件的数组b有多少种.条件是:b[i] <= a[i],并且b[1]^b[2]...^b[n] = k的数组 ...

  3. 线段树教做人系列(1)HDU4967 Handling the Past

    题意:给你n组操作,分别为压栈,出栈,询问栈顶元素.每一组操作有一个时间戳,每次询问栈顶的元素的操作询问的是在他之前出现的操作,而且时间戳小于它的情况.题目中不会出现栈为空而且出栈的情况. 例如: p ...

  4. 线段树教做人系列(3) HDU 4913

    题意及思路看这篇博客就行了,讲得很详细. 下面是我自己的理解: 如果只有2,没有3的话,做法就很简单了,只需要对数组排个序,然后从小到大枚举最大的那个数.那么它对答案的贡献为(假设这个数排序后的位置是 ...

  5. Codeforces 750E New Year and Old Subsequence - 线段树 - 动态规划

    A string t is called nice if a string "2017" occurs in t as a subsequence but a string &qu ...

  6. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  7. Codeforces 1063F - String Journey(后缀数组+线段树+dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题,做了我整整 2.5h,写篇题解纪念下逝去的中午 后排膜拜 1 年前就独立切掉此题的 ymx,我在 2021 年的第 5270 个小 ...

  8. Codeforces 1368H - Breadboard Capacity(最小割+线段树维护矩阵乘法)

    Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色 ...

  9. Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...

随机推荐

  1. jquery——简单的下拉列表制作及bind()方法的示例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. python中模块的引用

    一. 模块的定义 定义 python模块(Module),是一个python文件,以.py结尾,包含了python对象定义和python语句.模块让你能够有逻辑地组织你的python代码段,把相关的代 ...

  3. SpringBoot使用devtools导致的类型转换异常

    遇到的问题:SpringBoot项目中的热部署引发的血的教训,报错代码位置: XStream xStream1 = new XStream(); xStream1.autodetectAnnotati ...

  4. 51nod 1449 贪心

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1449 1449 砝码称重 题目来源: CodeForces 基准时间限制 ...

  5. Java tutorial 02

    一.EnumTest.java枚举类型 public class EnumTest { public static void main(String[] args) { Size s=Size.SMA ...

  6. .NET和Docker ,比翼双飞

    DockerCon 2019本周将在旧金山举行 ,DockerCon 是从业者.贡献者.维护者.开发者和容器生态系统学习.网络和创新的一站式活动. .NET 团队博客发布了<一起使用.NET和D ...

  7. java学习笔记 --- 多线程(线程安全问题——同步代码块)

    1.导致出现安全问题的原因: A:是否是多线程环境 B:是否有共享数据 C:是否有多条语句操作共享数据 2.解决线程安全问题方法: 同步代码块: synchronized(对象){ 需要同步的代码; ...

  8. hdu1398 Square Coins(母函数)

    题目类似于整数拆分,很明显用母函数来做. 母函数的写法基本固定,根据具体每项乘式的不同做出一些修改就行了.它的思路是从第一个括号开始,一个括号一个括号的乘开,用c1数组保存之前已经乘开的系数,即c1[ ...

  9. 解决Opencv高低版本不兼容问题

    目前OpenCV版本已更新到2.4...由此出现了一系列问题,解决如下: 1.cxcore.h等头文件找不到: 法一.将opencv1.0中的各种.h或者.lib文件拷到opencv2.3.1对应in ...

  10. Webpack之“多页面开发”最佳实战

    前言:相信之前看过这篇文章,前端构建工具之“Webpack”的朋友,对于Webpack有了一定的了解.那么今天就跟大家分享下:如何利用webpack,来进行多页面项目实战开发. 一.项目初始化安装 1 ...