一致性问题和Raft一致性算法——一致性问题是无法彻底解决的,可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%
一致性问题
一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的结果达成一致. 更详细的解释就是,当其中某个服务器收到客户端的一组指令时,它必须与其它服务器交流以保证所有的服务器都是以同样的顺序收到同样的指令,这样的话所有的 服务器会产生一致的结果,看起来就像是一台机器一样.
实际生产中一致性算法需要具备以下属性:
- safety:即不管怎样都不会返回错误的结果
- available:只要大部分的机器正常,就仍然可以工作.比如五台机器的集群允许最多两台机器坏掉.
- 不依赖时间来确保一致,即系统是异步的.
- 一般情况下,运行时间由大多数的机器决定,不会因为有少部分慢的机器而影响总体效率.
为什么要解决一致性问题?
我们可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%, 为什么? 就是因为一致性问题是无法彻底解决的. 以下四个分布式系统中的问题都与一致性问题有关:
- reliable multicast 可靠组播
- membership protocal (failuer detector) 集群中成员的管理
- leader election 选举算法
- mutual exclution 互斥,例如资源的独占和分配
Raft一致性算法
前面我介绍了教科书上 的一些选举算法, 它们也是属于一致性算法,即最后所有服务器所认为的leader都是一致的. 现在实际应用中主流的一致性算法有两个Paxos 和 Raft. Zookeeper 就是选用的Paxos, 而etcd使用的Raft. 作为一名Go爱好者,我先来讲一下Raft吧.
Raft是因为Paxos太难懂太难以实现而提出的,目的是在可靠性不输于Paxos的情况下,尽可能的简单易懂. 但是Raft的论文 In Search of an Understandable Consensus Algorithm还是有18页,我要比它更简单易懂.
Raft把一致性问题分解成为三个小问题:
- leader election 选举
- log replication 日志复制,同步
- safety 安全性
基本概念
每个Server有三个状态: leader, follower, candidate
- follower: 不发request而只会回复leader和candidate的request.
- leader: 处理client发过来的请求
- candidate: leader的候选人

Raft把时间分为terms. 每一个term开始时都进行一次选举. 每一个term里最多有一个leader, 或者没有leader.
RPC实现
算法需要两种RPC, RequestVote RPC:由candidates在选举过程中发起,当另外一个server收到这个RPC之后, 只有当对方term和log都至少和自己的一样新的时候才会投赞成票,收到多数赞成票的candidate会当选leader. 
AppendEntries RPC 由leader发起用来分发日志, 强迫follwer的log和自己一致. 
Leader election
如果一个follower在election timeout的时间里没有收到leader的信息,就进入新的term,转成candidate,给自己投票,发起选举 RequestVote RPC. 这个状态持续到发生下面三个中的任意事件:
- 它赢得选举
- 另外有Server获得选举
- 1个term过去了,还是没有选举结果
为什么会有3这个情况呢,就是当如果大家同时发起选举,都投给自己,那就没有Server能够得到多数选票了,这个时候就要进入下一个term,再 选一次. 为了避免这个情况持续发生,每个Server的election time被随机的设成不同的值,所以先timeout的就可以先发起下一次选举.
Log replication
选好leader之后就可以分发log啦.
每一个log都有一个log index 和 term number. 当大多数的follower都复制好这个log时,就说这个log是committed,可以执行了. Leader 记住已经commit的最大log index, 用它来分发下一个 AppendEntries RPC. 这个和TCP里段的编号的作用是一样的.
当一个leader重新选出来时,它的log和follower的log可能不一致,那么它会强制所有的follower都和自己的log一致.首先leader要找到和follower之间的最大的编号一致的log,然后覆盖掉那之后的log.
Safety
但是到目前为止仍然不能保证安全性.比如说, 当leader在commit log时, 某follower掉线了,然后这个follower后来被选为leader,它会覆盖掉现在follwer那些已经committed log, 由于这些log是已经执行过的,所以结果不同的机器就执行不同的指令. 在选举过程中,再加多一个限制就可以防止这种情况发生, 即:
Leader completeness property:
对于任意一个term, leader都要包含所以在之前term里committed的logs.
这样就是完整的Raft算法了.
注:图片都来自Paper In Search of an Understandable Consensus Algorithm
转自:http://daizuozhuo.github.io/consensus-algorithm/
一致性问题和Raft一致性算法——一致性问题是无法彻底解决的,可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%的更多相关文章
- 分布式系统一致性问题和Raft一致性算法
一致性问题 一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的 ...
- [转载] 一致性问题和Raft一致性算法
原文: http://daizuozhuo.github.io/consensus-algorithm/ raft 协议确实比 paxos 协议好懂太多了. 一致性问题 一致性算法是用来解决一致性问题 ...
- 分布式系统一致性问题与Raft算法(上)
最近在做MIT6.824的几个实验,真心觉得每一个做分布式相关开发的程序员都应该去刷一遍(裂墙推荐),肯定能够提高自己的技术认知水平,同时也非常感谢MIT能够把这么好的资源分享出来. 其中第二个实验, ...
- 分布式系统一致性问题与Raft算法(下)
上一篇讲述了什么是分布式一致性问题,以及它难在哪里,liveness和satefy问题,和FLP impossibility定理.有兴趣的童鞋可以看看分布式系统一致性问题与Raft算法(上). 这一节 ...
- 深入一致性哈希(Consistent Hashing)算法原理,并附100行代码实现
转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和J ...
- ARM Linux 内核 panic 之cache 一致性 ——Cortex-A9多核cache和TLB一致性广播
ARM Linux 内核 panic 之cache 一致性 ——Cortex-A9多核cache和TLB一致性广播 Cortex-A9的多喝CPU可以接收和执行一致性广播操作,当其使能并处于SMP模式 ...
- raft共识算法
raft共识算法 分布式一致性问题 如果说,服务器只有一个节点,那么,要保证一致性,没有任何问题,因为所有读写都在一个节点上发生.那如果server端有2个.3个甚至更多节点,要怎么达成一致性呢?下面 ...
- Raft共识算法详解
Raft共识算法 一.背景 拜占庭将军问题是分布式领域最复杂.最严格的容错模型.但在日常工作中使用的分布式系统面对的问题不会那么复杂,更多的是计算机故障挂掉了,或者网络通信问题而没法传递信息,这种情况 ...
- RAFT选举算法-分布式数据库困惑
在做HIS研发工作的时候一直想完善其数据组件,想做一个分布式的数据库支持系统.但一直以来都不清楚这个选举算法应怎么做,原来有一个叫raft的算法https://www.cnblogs.com/just ...
随机推荐
- args *args **kwargs区别
python 函数中的参数类型有两种,分别为 位置参数和关键字参数: 一 .位置参数(该类参数位置固定不变) args: 表示默认位置参数,该参数是具象的,有多少个参数就传递多少参数,且参数位 ...
- DAO调用存储过程问题
相关文章:1.使用 Spring 框架调用 DB2 存储过程 2.Spring如何使用JdbcTemplate调用存储过程的三种情况 3.spring中调用存储过程,函数
- object.Equals与object.ReferenceEquals方法
object.Equals方法表达的是语义判等,不一定是引用判等. object.ReferenceEquals方法是肯定是引用判等. 怎么实现一个对象的值语义的 Equals方法?实验. MyCla ...
- Unity 插件收集(持续更新)
MGS Machinery Unity绑定机械关节,铰链,机构插件包. MGS Mechanical Drive 用于绑定场景中的机械驱动器的Unity插件 Unity Wave Propa ...
- ULN2003A 使用,有坑
8脚接24V负极 9脚接24V正极 16接24V继电器,再接到24V正极 1-7无论给5V 正 或 负,10-16都不能达到24V,越靠近输入端的输出端电压越大,最大的才11V,最小的2.5V 最后发 ...
- 详解Maven项目利用java service wrapper将Java程序生成Windows服务
在项目的开发中,有时候需要将Java应用程序打包成Windows服务,我们就直接可以通过windows的服务来启动和关闭java程序了. 本博文将通过有两种方法实现该功能,手动创建法和Maven自动打 ...
- php的json_encode不兼容JSON_UNESCAPED_UNICODE
//php的json_encode不兼容JSON_UNESCAPED_UNICODE的解决方案 function _json_encode($value) { if (version_compare( ...
- Codeforces Round #254 (Div. 2)B. DZY Loves Chemistry
B. DZY Loves Chemistry time limit per test 1 second memory limit per test 256 megabytes input standa ...
- delete 和 truncate 的 区别
如果要清空表中的所有记录,可以使用下面的两种方法: DELETE FROM table1 TRUNCATE TABLE table1 以下 为之区别: 1)执行速度和灵活性 trunca ...
- PHP数据库链接类(PDO+Access)实例分享
这篇文章主要介绍了PHP数据库链接类(PDO+Access),有需要的朋友可以参考一下 PHP PDO Access链接 复制代码代码如下: class DbHelpClass { ...