一致性问题

一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的结果达成一致. 更详细的解释就是,当其中某个服务器收到客户端的一组指令时,它必须与其它服务器交流以保证所有的服务器都是以同样的顺序收到同样的指令,这样的话所有的 服务器会产生一致的结果,看起来就像是一台机器一样.

实际生产中一致性算法需要具备以下属性:

  • safety:即不管怎样都不会返回错误的结果
  • available:只要大部分的机器正常,就仍然可以工作.比如五台机器的集群允许最多两台机器坏掉.
  • 不依赖时间来确保一致,即系统是异步的.
  • 一般情况下,运行时间由大多数的机器决定,不会因为有少部分慢的机器而影响总体效率.

为什么要解决一致性问题?

我们可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%, 为什么? 就是因为一致性问题是无法彻底解决的. 以下四个分布式系统中的问题都与一致性问题有关:

  1. reliable multicast 可靠组播
  2. membership protocal (failuer detector) 集群中成员的管理
  3. leader election 选举算法
  4. mutual exclution 互斥,例如资源的独占和分配

Raft一致性算法

前面我介绍了教科书上 的一些选举算法, 它们也是属于一致性算法,即最后所有服务器所认为的leader都是一致的. 现在实际应用中主流的一致性算法有两个Paxos 和 Raft. Zookeeper 就是选用的Paxos, 而etcd使用的Raft. 作为一名Go爱好者,我先来讲一下Raft吧.

Raft是因为Paxos太难懂太难以实现而提出的,目的是在可靠性不输于Paxos的情况下,尽可能的简单易懂. 但是Raft的论文 In Search of an Understandable Consensus Algorithm还是有18页,我要比它更简单易懂.

Raft把一致性问题分解成为三个小问题:

  1. leader election 选举
  2. log replication 日志复制,同步
  3. safety 安全性

基本概念

每个Server有三个状态: leader, follower, candidate

  • follower: 不发request而只会回复leader和candidate的request.
  • leader: 处理client发过来的请求
  • candidate: leader的候选人

Raft把时间分为terms. 每一个term开始时都进行一次选举. 每一个term里最多有一个leader, 或者没有leader.

RPC实现

算法需要两种RPC, RequestVote RPC:由candidates在选举过程中发起,当另外一个server收到这个RPC之后, 只有当对方term和log都至少和自己的一样新的时候才会投赞成票,收到多数赞成票的candidate会当选leader.

AppendEntries RPC 由leader发起用来分发日志, 强迫follwer的log和自己一致.

Leader election

如果一个follower在election timeout的时间里没有收到leader的信息,就进入新的term,转成candidate,给自己投票,发起选举 RequestVote RPC. 这个状态持续到发生下面三个中的任意事件:

  1. 它赢得选举
  2. 另外有Server获得选举
  3. 1个term过去了,还是没有选举结果

为什么会有3这个情况呢,就是当如果大家同时发起选举,都投给自己,那就没有Server能够得到多数选票了,这个时候就要进入下一个term,再 选一次. 为了避免这个情况持续发生,每个Server的election time被随机的设成不同的值,所以先timeout的就可以先发起下一次选举.

Log replication

选好leader之后就可以分发log啦.

每一个log都有一个log index 和 term number. 当大多数的follower都复制好这个log时,就说这个log是committed,可以执行了. Leader 记住已经commit的最大log index, 用它来分发下一个 AppendEntries RPC. 这个和TCP里段的编号的作用是一样的.

当一个leader重新选出来时,它的log和follower的log可能不一致,那么它会强制所有的follower都和自己的log一致.首先leader要找到和follower之间的最大的编号一致的log,然后覆盖掉那之后的log.

Safety

但是到目前为止仍然不能保证安全性.比如说, 当leader在commit log时, 某follower掉线了,然后这个follower后来被选为leader,它会覆盖掉现在follwer那些已经committed log, 由于这些log是已经执行过的,所以结果不同的机器就执行不同的指令. 在选举过程中,再加多一个限制就可以防止这种情况发生, 即:

Leader completeness property:
对于任意一个term, leader都要包含所以在之前term里committed的logs.

这样就是完整的Raft算法了.

注:图片都来自Paper In Search of an Understandable Consensus Algorithm

转自:http://daizuozhuo.github.io/consensus-algorithm/

一致性问题和Raft一致性算法——一致性问题是无法彻底解决的,可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%的更多相关文章

  1. 分布式系统一致性问题和Raft一致性算法

    一致性问题 一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的 ...

  2. [转载] 一致性问题和Raft一致性算法

    原文: http://daizuozhuo.github.io/consensus-algorithm/ raft 协议确实比 paxos 协议好懂太多了. 一致性问题 一致性算法是用来解决一致性问题 ...

  3. 分布式系统一致性问题与Raft算法(上)

    最近在做MIT6.824的几个实验,真心觉得每一个做分布式相关开发的程序员都应该去刷一遍(裂墙推荐),肯定能够提高自己的技术认知水平,同时也非常感谢MIT能够把这么好的资源分享出来. 其中第二个实验, ...

  4. 分布式系统一致性问题与Raft算法(下)

    上一篇讲述了什么是分布式一致性问题,以及它难在哪里,liveness和satefy问题,和FLP impossibility定理.有兴趣的童鞋可以看看分布式系统一致性问题与Raft算法(上). 这一节 ...

  5. 深入一致性哈希(Consistent Hashing)算法原理,并附100行代码实现

    转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和J ...

  6. ARM Linux 内核 panic 之cache 一致性 ——Cortex-A9多核cache和TLB一致性广播

    ARM Linux 内核 panic 之cache 一致性 ——Cortex-A9多核cache和TLB一致性广播 Cortex-A9的多喝CPU可以接收和执行一致性广播操作,当其使能并处于SMP模式 ...

  7. raft共识算法

    raft共识算法 分布式一致性问题 如果说,服务器只有一个节点,那么,要保证一致性,没有任何问题,因为所有读写都在一个节点上发生.那如果server端有2个.3个甚至更多节点,要怎么达成一致性呢?下面 ...

  8. Raft共识算法详解

    Raft共识算法 一.背景 拜占庭将军问题是分布式领域最复杂.最严格的容错模型.但在日常工作中使用的分布式系统面对的问题不会那么复杂,更多的是计算机故障挂掉了,或者网络通信问题而没法传递信息,这种情况 ...

  9. RAFT选举算法-分布式数据库困惑

    在做HIS研发工作的时候一直想完善其数据组件,想做一个分布式的数据库支持系统.但一直以来都不清楚这个选举算法应怎么做,原来有一个叫raft的算法https://www.cnblogs.com/just ...

随机推荐

  1. Ubuntu配置apache2.4配置虚拟主机遇到的问题

    update: 偶然看到了 apache的更新说明,直接贴个地址过来吧. http://httpd.apache.org/docs/2.4/upgrading.html 最近想把web开发目录从/va ...

  2. centos7 ACL

    Linux文件权限与属性详解 之 ACL   Linux文件权限与属性详解 之 一般权限Linux文件权限与属性详解 之 ACLLinux文件权限与属性详解 之 SUID.SGID & SBI ...

  3. Java并发基础:了解无锁CAS就从源码分析

    https://segmentfault.com/a/1190000015881923

  4. Linux高并发应用类型对系统内核的优化

    Linux操作系统内核参数优化 net.ipv4.tcp_max_tw_buckets = net.ipv4.ip_local_port_range = net.ipv4.tcp_tw_recycle ...

  5. 打造一个高逼格的android开源项目——小白全攻略 (转)

    转自:打造一个高逼格的android开源项目 小引子 在平时的开发过程中,我们经常会查阅很多的资料,最常参考的是 github 的开源项目.通常在项目的主页面能看到项目的简介和基本使用,并且时不时能看 ...

  6. mysql 存储过程初探

    使用存储过程好处在于: 1.隐藏敏感的算法,避免被正常的开发人员看到,把业务逻辑隐藏在数据库中,而非程序代码里 2.简化应用代码程序,放到数据库里肯定就对程序代码简化有好处了 3.不同的开发语言都可以 ...

  7. 如何更好的利用Node.js的性能极限

    通过使用非阻塞.事件驱动的I/O操作,Node.js为构建和运行大规模网络应用及服务提供了很好的平台,也受到了广泛的欢迎.其主要特性表现为能够处理庞大的并且高吞吐量的并发连接,从而构建高性能.高扩展性 ...

  8. Card Collector

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  9. 微信小程序报“app.json”错误解决办法

    1.亲测 “app.json未找到入口 app.json 文件,或者文件读取失败,请检查后重新编译.” 是由于新创建的界面xxx.json所在的文件夹为0KB造成的,你可以试着在xxx.json文件内 ...

  10. DNN自适应