题目描述

给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值。

输入格式

第一行输入一个数字\(n\)。

第二行输入\(n\)个数字,第\(i\)个数字为\(a_{i}\),以空格隔开。

接下来输入\(n\)行询问,每行输入四个数字\(opt\)、\(l\)、\(r\)、\(c\),以空格隔开。

若\(opt = 0\),表示将位于\([l, r]\)的之间的数字都加\(c\)。

若\(opt = 1\),表示询问\(a_{r}\)的值(\(l\)和\(c\)忽略)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4

1 2 2 3

0 1 3 1

1 0 1 0

0 1 2 2

1 0 2 0

样例输出

2

5

数据范围与提示

对于所有的数据,\(1 \leq n \le 50000\) ,\(-2^{31} \leq others、ans \le 2_{31} - 1\) 。

题解

这是一道很好的分块入门题。

所谓分块,就是一种通过将一个序列分成多块后,在每块上打标记以实现快速区间修改,区间查询的一种算法。其均摊时间复杂度为\(\Theta\sqrt{n}\)。

在一般情况下,每个块的长度都为\(\sqrt{n}\)。

分块,被尊称为优雅的暴力,因此它的代码难度也不算高。总之,比线段树、树状数组等毒瘤数据结构的代码难度低。

我们需要建立三个数组:

  • \(a[]\),为题目中输入的序列;
  • \(b[]\),记录每个序列中的每个数在那一块;
  • \(add[]\),为序列的标记数组。

话不多说,上代码。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>//头文件准备 using namespace std;//使用标准名字空间 inline int gi()//快速读入
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-')f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
} int a[50005], b[50005], add[50005], len, n, m;//a[],b[],add[]的意思如分析,len为每一块的长度,n为序列长度,m为询问个数,在本题中=n。 inline void modify(int l, int r, int x)//区间修改的自定义函数
{
for (int i = l; i <= min(r, b[l] * len); i++) a[i] = a[i] + x;//增加序列中的数
if (b[l] != b[r])//如果要修改的不在同一个块中
{
for (int i = (b[r] - 1) * len + 1; i <= r; i++) a[i] = a[i] + x;//继续增加序列中的数
}
for (int i = b[l] + 1; i <= b[r] - 1; i++) add[i] = add[i] + x;//给区间内的数增加标记
} int main()//进入主函数
{
n = gi();//输入元素个数
len = sqrt(n);//求出每个块的长度
for (int i = 1; i <= n; i++) a[i] = gi();//输入序列中的数
for (int i = 1; i <= n; i++) b[i] = (i - 1) / len + 1;//求出序列中的数分别属于哪一个块
for (int p = 1; p <= n; p++)
{
int fl = gi(), l = gi(), r = gi(), w = gi();//输入操作的描述
if (!fl)//如果是修改
{
modify(l, r, w);//修改区间内的数
}
else//否则就是求出某个数
{
printf("%d\n", a[r] + add[b[r]]);//输出这个位置的数的标记和它在序列中原本的数的和
}
}
return 0;//完美结束
}

题解【loj6277】数列分块入门1的更多相关文章

  1. 题解——loj6277 数列分块入门1(分块)

    分块裸题 然后就是记得左右边界处理和分块的初始化 忘了初始化会被卡成暴力 #include <cstdio> #include <algorithm> #include < ...

  2. 题解——loj6281 数列分块入门5 (分块)

    分块 若块内最大值为0或1,则不用再开方 然后暴力修改 可以证明,如果开方后向下取整,则最多开方4次一个数就会变成0或1 #include <cstdio> #include <cm ...

  3. 题解——loj6280 数列分块入门4 (分块)

    分块维护一个区间和 然后记得更新的时候左边角块的tag不要打错到右边角块 #include <cstdio> #include <algorithm> #include < ...

  4. [LOJ6277]数列分块入门 1

    题目大意: 给你一个长度为$n(n\leq 50000)$的序列$A$,支持进行以下两种操作: 1.将区间$[l,r]$中所有数加上$c$: 2.询问$A_r$的值.思路: 分块. 对于整块的数据打标 ...

  5. loj6277 数列分块入门题1

    裸题分块. #include <bits/stdc++.h> using namespace std; ],b[],n,m,t1,t2,t3,t4,sq; int main(){ ios: ...

  6. 题解——loj6279 数列分块入门3 (分块)

    用set维护有序序列 或许sort也可以,但这题的前驱定义是严格小于 所以要去重 然后就是记得自己打的加法tag在query的时候一定要算上 话说这题数据有点fake啊忘了查询算上自己的标记了还有70 ...

  7. 题解——loj6278 数列分块入门2 (分块)

    查询小于k的值 注意lower_bound一定要减去查找的起始位置得到正确的位置 调了快两天 淦 #include <cstdio> #include <algorithm> ...

  8. LOJ6277~6285 数列分块入门

    Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...

  9. 数列分块入门九题(一):LOJ6277~6279

    Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...

  10. LibreOJ6279. 数列分块入门 3 题解

    题目链接:https://loj.ac/problem/6279 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的前驱(比其 ...

随机推荐

  1. [HNOI2009]图的同构记数

    题意 在所以置换下,本质不同的\(n\)阶图个数 做法 可以假想成\(K_n\),边有黑白两色,黑边存在于原图,白边存在于补图 由于\(n\le 60\),可以手算出拆分数不大,所以我们爆搜置换群 对 ...

  2. Linux connect: Network is unreachable

    在虚拟机中ping,发现网络不通: [root@node01 ~]# ping 114.114.114.114 connect: Network is unreachable 发生此问题时,环境如下: ...

  3. 题解【AcWing1090】绿色通道

    题面 题目要求出最长的空题段最短的长度,显然可以二分答案. 考虑如何 check. 设二分到的值是 \(x\),即最长的空题段长度至少为 \(x\). 其实整个 check 的过程可以看作一个 DP, ...

  4. Spring 理解和开始

    1.先看看Spring的历史吧 https://baijiahao.baidu.com/s?id=1620099105315862154&wfr=spider&for=pc 2.Spr ...

  5. 2级搭建类201-Oracle 12cR2 单实例 ASM(OEL7.7)公开

    项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列除特定项目目前不对外发布,仅作为博客记录,其他公开.如学员在 ...

  6. 微信小程序调试页面的坑

    使用微信开发者工具切新的页面保存刷新无法在左侧直接预览必须在app.json文件配置页面(填写路径但是不用写后缀名),并且把想要预览的页面放在第一个位置.

  7. tomcat常见状态码

  8. [CF1034B] Longest Palindrome - 贪心

    如果自己是回文串可以做中心 如果一个串和另一个串的转置相等则可以凑一对 优先配对 #include <bits/stdc++.h> using namespace std; int n,m ...

  9. Your name ?

    序言 才发觉自己有许多名字 ··································································· 言归正传 今天才发现,自己在不同地方 ...

  10. 跨域 node git

    promise 异步回调地狱:就是多个异步请求嵌套的表现 瑕疵:后期维护难 解决:通过promise技术 什么是promise:就是一种异步编程的解决方案 有三个状态:进行中.成功了,失败了 var ...