矩阵快速幂+二分 poj3233
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
int mod;
int n;
struct matrix
{
int ma[][];
}init, res;
matrix Mult(matrix x, matrix y)
{
int i,j,k;
matrix tmp;
memset(tmp.ma,,sizeof(tmp.ma));
for(i=;i<n;i++)
for(j=;j<n;j++)
for(k=;k<n;k++)
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
return tmp;
}
matrix Pow(matrix x, int k)
{
matrix tmp;
int i,j;
memset(tmp.ma,,sizeof(tmp.ma));
for(i=;i<n;i++) tmp.ma[i][i]=;
while(k){
if(k&) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=;
}
return tmp;
}
matrix add(matrix x, matrix y)
{
int i, j;
matrix tmp;
for(i=;i<n;i++)
for(j=;j<n;j++)
tmp.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%mod;
return tmp;
}
matrix sum(matrix x, int k)
{
matrix tmp, y;
if(k==) return x;
tmp=sum(x,k/);
if(k&){
y=Pow(x,k/+);
tmp=add(Mult(y,tmp),tmp);
return add(tmp,y);
}
else{
y=Pow(x,k/);
return add(Mult(y,tmp),tmp);
}
}
int main()
{
int k,m,x,i,j;
scanf("%d%d%d",&n,&k,&mod);
for(i=;i<n;i++){
for(j=;j<n;j++){
scanf("%d",&x);
init.ma[i][j]=x%mod;
}
}
res=sum(init, k);
for(i=;i<n;i++){
for(j=;j<n;j++){
printf("%d",res.ma[i][j]);
if(j!=n-) printf(" ");
}
puts("");
}
return ;
}
矩阵快速幂+二分 poj3233的更多相关文章
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分
矩阵 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submission ...
- HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
M斐波那契数列 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- HDU:Gauss Fibonacci(矩阵快速幂+二分)
http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...
- 经典矩阵快速幂之一-----poj3233(矩阵套矩阵
题意:给你一个矩阵A,求S=A+A^2+A^3+...+A^k. 其实这个当时我看着毫无头绪,看了他们给的矩阵发现好!精!妙! 我们这样看 是不是有点思路! 没错!就是右上角,我们以此类推可以得到A+ ...
- SPOJ AMR10E Stocks Prediction --二分求和+矩阵快速幂
题意:给一个递推式S(n) = a1*S(n-1)+...+aR*S(n-R),要求S(k)+S(2k)+...+S(nk)的值. 分析:看到n的大小和递推式,容易想到矩阵快速幂.但是如何转化呢? 首 ...
随机推荐
- jQuery笔记(四)jQuery中的动画
jQuery最吸引人的地方莫过于能做出绚丽的动画了,也是能极大提高用户体验的地方,这次我们就来一探jQuery中的动画! 一. show()方法和hide()方法 show()方法与hide()方法是 ...
- Java第四节课总结
动手动脑1:如果类提供了一个自定义的构造方法,将导致系统不再提供默认构造方法.Foo obj1=new Foo()在此处调用应增加参数. 动手动脑2:静态初始化块只执行一次.创建子类型的对象时,也会导 ...
- IO流学习之字节流(一)
IO流(Input/Output) 简介: 流是一种抽象概念,它代表了数据的无结构化传递.按照流的方式进行输入输出,数据被当成无结构的字节序或字符序列.从流中取得数据的操作称为提取操作,而向流中添加数 ...
- python scraping webs - python取得NIPS oral paper列表
from lxml import html import requests # using xpath # page = requests.get('http://econpy.pythonanywh ...
- P1462 通往奥格瑞玛的道路【二分+Dij】
P1462 通往奥格瑞玛的道路 提交 29.89k 通过 6.88k 时间限制 1.00s 内存限制 125.00MB 题目提供者gconeice 难度提高+/省选- 历史分数100 提交记录 查看题 ...
- 虚拟机出问题 Oh no,something has gone wrong! 解决方法
系统出错时ctrl+alt+F2 进入命令模式root输入密码yum update...等待输入 y...等待终于好了
- virtual box虚拟机跨物理机迁移
VirtualBox保存虚机数据的是vdi文件,但是直接拷贝在新的VirtualBox中不能打开,因为每个vdi文件都包含了一个uuid的数据,如果直接拷贝,uuid在新的VirtualBox中是不能 ...
- vue必须掌握之组件通信(7种方法)
方法一:$emit / props 父组件通过props的方式向子组件传递,子组件通过$emit触发父组件中v-on绑定的自定义事件 <!--父组件--> <template> ...
- ubuntu 16.04.1上安装并使用nginx
1.安装 sudo apt-get install nginx 2.这时候应该就已经启动了,跳到步骤4. 通过命令“ps -aux | grep nginx”看下是否启动 3.如果没有启动,可以使用命 ...
- k8s获取apiversion下面的对应可用资源
1- 获取api命令 [注:以下命令的url地址http://127.0.0.1/为k8s master的地址] kubectl api-versions 输出内容如下: apps/v1beta1 a ...