Now we'll have a look at the Config stream. It begins like follows, and goes on forever with various integer fields and other binary blobs.

(StorageContainer) [15] {
0 0x2090: (StorageRaw) {
Size: 4
String: ....
Hex: 00 00 00 00 }
1 0x20e0: (StorageContainer) [4] {
0 0x0100: (StorageRaw) {
Size: 12
String: .. A........
Hex: 00 00 20 41 0a 00 00 00 01 00 00 00 }
1 0x0400: (StorageRaw) {
Size: 8
String: ........
Hex: 07 00 00 00 01 00 00 00 }

As most of the contents seems fairly different from eachother, it's best to look from a distance to the main container.

(StorageContainer) [15] {
0 0x2090: (StorageRaw)
1 0x20e0: (StorageContainer) [4]
2 0x20a0: (StorageContainer) [2]
3 0x20a5: (StorageContainer) [2]
4 0x20a6: (StorageContainer) [1]
5 0x2190: (StorageContainer) [2]
6 0x20b0: (StorageContainer) [10]
7 0x2130: (StorageContainer) [3]
8 0x2080: (StorageContainer) [213]
9 0x20d0: (StorageContainer) [9]
10 0x2160: (StorageContainer) [5]
11 0x21a0: (StorageContainer) [82]
12 0x2180: (StorageContainer) [1]
13 0x2007: (StorageContainer) [1]
14 0x2008: (StorageContainer) [3] }

The first id seems to be unique, so we can assume that each of these containers has a specific set of information in it. Comparing between files of max versions, there are some less and some more of these identifiers, but the contents of them remains pretty much the same.

One container in this file particularly interests me, as it contains strings related to the NeL Material, and thus will likely be necessary to parse the Scene format where this is stored. More specifically, chunk 0x2180 contains stuff like the following:

9 0x0007: (StorageContainer) [3] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 02 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 17
String: ....bForceZWrite.
Hex: 0d 00 00 00 62 46 6f 72 63 65 5a 57 72 69 74 65 00 }
2 0x0007: (StorageContainer) [7] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 06 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 9
String: ....type.
Hex: 05 00 00 00 74 79 70 65 00 }
2 0x0006: (StorageRaw) {
Size: 12
String: ....boolean.
Hex: 08 00 00 00 62 6f 6f 6c 65 61 6e 00 }
...

The block itself begins like:

12 0x2180: (StorageContainer) [1] {
0 0x0040: (StorageContainer) [2] {
0 0x0050: (StorageRaw) {
Size: 12
String: ....._.d..+"
Hex: 00 0c 00 00 ec 5f c7 64 b9 9e 2b 22 }
1 0x0007: (StorageContainer) [10] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 09 00 00 00 }
1 0x0007: (StorageContainer) [15] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 0e 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 9
String: ....nlbp.
Hex: 05 00 00 00 6e 6c 62 70 00 }
...

A max file that has the NeL Multi Bitmap script used in it as well, has 2 0x0040 entries in the 0x2180 container. We'll call the 0x2180 block ConfigScript, and the 0x0040 container ConfigScriptEntry from now on, as these seem to be related to how script parameters will be stored in the file. What's also interesting is that all the chunks with id 0x0007 in this entire block are containers, and all the 0x0060 blocks are integers. The 0x0050 block is the header block for the ConfigScriptEntry, and contains the same SuperClassID and ClassID from the NeL Material script as seen previously.

Here are a few 0x0007 blocks from a specific depth inside the tree structure:

2 0x0007: (StorageContainer) [5] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 04 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 9
String: ....type.
Hex: 05 00 00 00 74 79 70 65 00 }
2 0x0006: (StorageRaw) {
Size: 12
String: ....boolean.
Hex: 08 00 00 00 62 6f 6f 6c 65 61 6e 00 }
3 0x0006: (StorageRaw) {
Size: 12
String: ....default.
Hex: 08 00 00 00 64 65 66 61 75 6c 74 00 }
4 0x0001: (StorageRaw) {
Size: 4
String: ....
Hex: 00 00 00 00 } } }
2 0x0007: (StorageContainer) [7] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 06 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 9
String: ....type.
Hex: 05 00 00 00 74 79 70 65 00 }
2 0x0006: (StorageRaw) {
Size: 10
String: ....float.
Hex: 06 00 00 00 66 6c 6f 61 74 00 }
3 0x0006: (StorageRaw) {
Size: 12
String: ....default.
Hex: 08 00 00 00 64 65 66 61 75 6c 74 00 }
4 0x0004: (StorageRaw) {
Size: 4
String: ..#<
Hex: 0a d7 23 3c }
5 0x0006: (StorageRaw) {
Size: 7
String: ....ui.
Hex: 03 00 00 00 75 69 00 }
6 0x0007: (StorageContainer) [2] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 01 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 17
String: ....cfBumpUSpeed.
Hex: 0d 00 00 00 63 66 42 75 6d 70 55 53 70 65 65 64 00 } } } }
2 0x0007: (StorageContainer) [5] {
0 0x0060: (StorageRaw) {
Size: 4
String: ....
Hex: 04 00 00 00 }
1 0x0006: (StorageRaw) {
Size: 9
String: ....type.
Hex: 05 00 00 00 74 79 70 65 00 }
2 0x0006: (StorageRaw) {
Size: 12
String: ....integer.
Hex: 08 00 00 00 69 6e 74 65 67 65 72 00 }
3 0x0006: (StorageRaw) {
Size: 12
String: ....default.
Hex: 08 00 00 00 64 65 66 61 75 6c 74 00 }
4 0x0003: (StorageRaw) {
Size: 4
String: ....
Hex: 01 00 00 00 } } }

If you have an understanding of the file format at this point, and try to understand the contents of these blocks, you should notice how ridiculous this looks.

It's like making an xml file that goes

<name>Name</name><value>Number</value>
<name>Value</name><value>2</value>

instead of

<Number>2</Number>

thanks to abstraction layers being piled up on each other.

The 0x0060 entry contains an integer which states the number of chunks that follow in the container, and is thus basically the size header of an array. Chunks with id 0x0006 recognizably contain strings, prefixed with their size, which is already known by the chunk header, and followed by an unnecessary null value byte suffix. It gets even sillier. The blocks shown above are actually not arrays, but tables of two columns stored in an array stored in the chunk tree structure. The first value in the array is the name column, and the second value the value column.

These blocks are child chunks of containers, containing a chunk with a name of a data field, and describe the format of this data field. It is fairly straightforward, the value of the name 'type' is the type, the 'default' is the default, and so on. For the default value, and this actually goes for the entire format of the ConfigScript block, the id of the chunk is directly related to the type field, and defines the actual low level storage of the field. The type fields is very helpful in finding out the meanings of these chunk ids.

0x0001 is a boolean stored as 4 bytes, 0x0002 does not appear in my file, 0x0003 is a 32 bit possibly signed integer, 0x0004 is a float, 0x0005 is a string in the same format as the 0x0006 internal strings, 0x0007 is the previously covered array-in-a-container, 0x0008 is a color stored as a 3 floating point vector with value 255.f being the maximum. With this information, the file can be made much more readable. Here's a short excerpt (pun intended) from inside the ConfigScript block.

2 0x0007: (ConfigScriptMetaContainer) [42] {
0 0x0060: (CStorageValue) { 41 }
1 0x0006: (ConfigScriptMetaString) { main }
2 0x0003: (CStorageValue) { 1 }
3 0x0003: (CStorageValue) { 2 }
4 0x0007: (ConfigScriptMetaContainer) [3] {
0 0x0060: (CStorageValue) { 2 }
1 0x0006: (ConfigScriptMetaString) { rollout }
2 0x0006: (ConfigScriptMetaString) { NelParams } }
5 0x0007: (ConfigScriptMetaContainer) [3] {
0 0x0060: (CStorageValue) { 2 }
1 0x0006: (ConfigScriptMetaString) { bLightMap }
2 0x0007: (ConfigScriptMetaContainer) [5] {
0 0x0060: (CStorageValue) { 4 }
1 0x0006: (ConfigScriptMetaString) { type }
2 0x0006: (ConfigScriptMetaString) { boolean }
3 0x0006: (ConfigScriptMetaString) { default }
4 0x0001: (CStorageValue) { 0 } } }
6 0x0007: (ConfigScriptMetaContainer) [3] {
0 0x0060: (CStorageValue) { 2 }
1 0x0006: (ConfigScriptMetaString) { bUnlighted }
2 0x0007: (ConfigScriptMetaContainer) [7] {
0 0x0060: (CStorageValue) { 6 }
1 0x0006: (ConfigScriptMetaString) { type }
2 0x0006: (ConfigScriptMetaString) { boolean }
3 0x0006: (ConfigScriptMetaString) { default }
4 0x0001: (CStorageValue) { 0 }
5 0x0006: (ConfigScriptMetaString) { ui }
6 0x0007: (ConfigScriptMetaContainer) [2] {
0 0x0060: (CStorageValue) { 1 }
1 0x0006: (ConfigScriptMetaString) { cbUnlighted } } } }
7 0x0007: (ConfigScriptMetaContainer) [3] {
0 0x0060: (CStorageValue) { 2 }
1 0x0006: (ConfigScriptMetaString) { bStainedGlassWindow }
2 0x0007: (ConfigScriptMetaContainer) [7] {
0 0x0060: (CStorageValue) { 6 }
1 0x0006: (ConfigScriptMetaString) { type }
2 0x0006: (ConfigScriptMetaString) { boolean }
3 0x0006: (ConfigScriptMetaString) { default }
4 0x0001: (CStorageValue) { 0 }
5 0x0006: (ConfigScriptMetaString) { ui }
6 0x0007: (ConfigScriptMetaContainer) [2] {
0 0x0060: (CStorageValue) { 1 }
1 0x0006: (ConfigScriptMetaString) { cbStainedGlassWindow } } } }

Most other blocks in this file seem to contain value sets where the type is fixed to the id, and the id is basically the name of the config value. Right now, there doesn't seem to be anything in there that interests me, so I won't bother with them too much, but here's an example of one simplified anyways.

2 0x20a0: (Config20a0) [2] {
0 0x0100: (CStorageValue) { 1 }
1 0x0110: (Config20a0Entry) [25] {
0 0x0100: (CStorageValue) { 220 }
1 0x0110: (CStorageValue) { 0 }
2 0x0120: (CStorageValue) { 1 }
3 0x0130: (CStorageValue) { 0 }
4 0x0140: (CStorageValue) { 0 }
5 0x0150: (CStorageValue) { 0 }
6 0x0160: (CStorageValue) { 1 }
7 0x0161: (CStorageValue) { 1 }
8 0x0170: (CStorageValue) { 1 }
9 0x0180: (CStorageValue) { 0 }
10 0x0190: (CStorageValue) { 0 }
11 0x0200: (CStorageValue) { 0 }
12 0x0210: (CStorageValue) { 0 }
13 0x0220: (CStorageValue) { 994352038 }
14 0x0230: (CStorageValue) { 1041059807 }
15 0x0240: (CStorageValue) { 266338296 }
16 0x0250: (CStorageValue) { 131008 }
17 0x0260: (CStorageValue) { 0 }
18 0x0270: (CStorageValue) { 1 }
19 0x0280: (CStorageValue) { 0 }
20 0x0310: (CStorageValue) { 0 }
21 0x0290: (CStorageValue) { }
22 0x0390: (CStorageValue) { default }
23 0x0300: (StorageContainer) [1] {
0 0x0100: (StorageRaw) {
Size: 4
String: ....
Hex: 00 00 00 00 } }
24 0x0330: (StorageRaw) {
Size: 16
String: ................ } } }

Quite boring, right?

Next up is the long awaited Scene.

【转】http://blog.kaetemi.be/post/2012/08/19/3ds-Max-File-Format-%28Part-3%29

3ds Max File Format (Part 3: The department of redundancy department; Config)的更多相关文章

  1. 3ds Max File Format (Part 1: The outer file format; OLE2)

    The 3ds Max file format, not too much documentation to be found about it. There are some hints here ...

  2. 3ds Max File Format (Part 5: How it all links together; ReferenceMaker, INode)

    At this point, you should start to familiarize yourself a bit with the publicly available 3ds Max AP ...

  3. 3ds Max File Format (Part 2: The first inner structures; DllDirectory, ClassDirectory3)

    Now that we understand the outer structure of the file, it's time to look closer to what's inside. T ...

  4. 3ds Max File Format (Part 4: The first useful data; Scene, AppData, Animatable)

    The most interesting part of this file is, evidently, the Scene. Opening it up in the chunk parser, ...

  5. 3ds Max File Format (Part 6: We get signal)

    Let's see what we can do now. INode *node = scene.container()->scene()->rootNode()->find(uc ...

  6. The Department of Redundancy Department

    Write a program that will remove all duplicates from a sequence of integers and print the list of un ...

  7. uva 484 - The Department of Redundancy Department

    已有的数据结构装不下数据,或者不能处理现有的数据,那就必须要思考其他的辅助手段,辅助结构: #include <cstdio> #include <map> #include ...

  8. AVEVA PDMS to 3ds Max - RvmTranslator6.0beta

    AVEVA PDMS to 3ds Max - RvmTranslator6.0beta eryar@163.com RvmTranslato6.0 translate PDMS RVM to 3ds ...

  9. VRay 2.0 SP1 2.10.01 for 3ds max 9/2008/2009/2010/2011/2012 32/64位 顶渲简体中文版+英文版[中国室内设计论坛-室内人]

    VRay 2.0 SP1 2.10.01 for 3ds max 9/2008/2009/2010/2011/2012 32/64位 顶渲简体中文版+英文版[中国室内设计论坛-室内人] 对最新版本的V ...

随机推荐

  1. SpringBoot安全管理--(一)SpringSecurity基本配置

    简介: Spring Boot针对Spring Security提供了自动化配置方案,因此可以使Spring Security非常容易地整合进Spring Boot项目中,这也是在Spring Boo ...

  2. vue中keepalive怎么理解?​---vue中文社区

    vue中keepalive怎么理解? 说在前面: keep-alive是vue源码中实现的一个组件, 感兴趣的可以研究源码 https://github.com/vuejs/vue/blob/dev/ ...

  3. Markdown语法,及其在typora中的快捷键,学写博客吧!!!

    前言 Markdown (MD) 是现在最流行的一种文档书写语言格式.平常写笔记,写博客,写计划再好不过了.个人觉得使用很简单,右击鼠标,有你想要的操作. Typora是简洁.操作简单.功能强大.方便 ...

  4. python——面向对象基础(2),烤地瓜

    """Date:2020.2.9 测试案例:烤地瓜需求分析1.烤的时间和对应的地瓜状态:2.烤制过程步骤: 1.定义类, 地瓜属性,状态,烤的时间,调料 2.定义方法,怎 ...

  5. switch 语句 总结笔记

    1.switch 语句 语法: switch(expression) { case value1 : statement1; break; case value2 : statement2; brea ...

  6. 【spring boot】SpringBoot初学(9.1)– 简单配置corsFilter对跨域请求支持

    前言 只是简单的配置实现了cors,并没有讲任何东西.(有兴趣的可看: CORS 跨域 实现思路及相关解决方案) github: https://github.com/vergilyn/SpringB ...

  7. Ubuntu中FTP安装配置及基本概念(原创)

    注:本文出自博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 本文源链接:https://www.cnblogs.com/chloneda/p/ftp-inst ...

  8. Java后端API调用身份验证的思考

    在如今信息泛滥的数字时代中对产品安全性的要求越来越高了,就比如说今天要讨论的Java后端API调用的安全性,在你提供服务的接口中一定要保证调用方身份的有效性和合法性,不能让非法的用户进行调用,避免数据 ...

  9. css使用padding-bottom百分比进行提前占位,防止抖动

    页面加载抖动问题 在web开发中,经常会遇到这样一个问题,比如一个宽度百分百,高度自适应的图片,在网速慢的情况下加载过程中会出现抖动的问题(未加载图片前容器的高度为0,图片加载完成后下面的内容会被挤下 ...

  10. Linux网络课程学习第三天

    第三天在线视频学习. 学习内容:继续详细介绍了第二章节 Linux常用命令的使用方法. 学习感受:万事开头难,作为Linux零基础的我相信在这本书学完之后会有所收获. 学习心得:记住刘老师的一句口头禅 ...