机器学习作业(二)逻辑回归——Python(numpy)实现
题目太长啦!文档下载【传送门】
第1题
简述:实现逻辑回归。
此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客【传送门】。
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as op #S函数
def sigmoid(z):
g = 1/(1+np.exp(-z))
return g #cost计算函数
def costFunction(theta, X, y):
theta = np.array(theta).reshape((np.size(theta),1))
m = np.size(y)
h = sigmoid(np.dot(X, theta))
J = 1/m*(-np.dot(y.T, np.log(h)) - np.dot((1-y.T), np.log(1-h)))
return J.flatten() def gradient(theta, X, y):
theta = np.array(theta).reshape((np.size(theta), 1))
m = np.size(y)
h = sigmoid(np.dot(X, theta))
grad = 1/m*np.dot(X.T, h - y)
return grad.flatten() #读取数据,第一列是成绩1,第二列是成绩2,第三列是yes/no
data = np.loadtxt('ex2data1.txt', delimiter=',', dtype='float')
m = np.size(data[:, 0])
# print(data) #绘制样本点
X = data[:, 0:2]
y = data[:, 2:3]
pos = np.where(y == 1)[0]
neg = np.where(y == 0)[0]
X1 = X[pos, 0:2]
X0 = X[neg, 0:2]
plt.plot(X1[:, 0], X1[:, 1], 'k+')
plt.plot(X0[:, 0], X0[:, 1], 'yo')
plt.xlabel('Exam 1 score')
plt.ylabel('Exam 2 score') #求解最优解
one = np.ones(m)
X = np.insert(X, 0, values=one, axis=1)
initial_theta = np.zeros(np.size(X, 1))
result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, y), method='TNC', jac=gradient)
# print(result)
theta = result.x
cost = result.fun
print('theta:', theta)
print('cost:', cost) #绘制决策边界
plot_x = np.array([np.min(X[:, 1]), np.max(X[:, 2])])
# print(plot_x)
plot_y = (-1/theta[2])*(theta[1]*plot_x+theta[0])
# print(plot_y)
plt.plot(plot_x,plot_y)
plt.legend(labels=['Admitted', 'Not admitted'])
plt.axis([30, 100, 30, 100])
plt.show() #预测[45 85]成绩的学生,并计算准确率
theta = np.array(theta).reshape((np.size(theta),1))
z = np.dot([1, 45, 85], theta)
prob = sigmoid(z)
print('For a student with scores 45 and 85, we predict an admission probability of ', prob)
p = np.round(sigmoid(np.dot(X,theta)))
acc = np.mean(p==y)*100
print('Train Accuracy: ',acc,'%')
运行结果:


第2题
简述:通过正规化实现逻辑回归。
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as op #S函数
def sigmoid(z):
g = 1/(1+np.exp(-z))
return g #cost计算函数
def costFunction(theta, X, y, lamb):
theta = np.array(theta).reshape((np.size(theta), 1))
m = np.size(y)
h = sigmoid(np.dot(X, theta))
J = 1/m*(-np.dot(y.T, np.log(h)) - np.dot((1-y.T), np.log(1-h)))
# 添加项
theta2 = theta[1:, 0]
Jadd = lamb/(2*m)*np.sum(theta2**2)
J = J + Jadd
return J.flatten() #求梯度
def gradient(theta, X, y, lamb):
theta = np.array(theta).reshape((np.size(theta), 1))
m = np.size(y)
h = sigmoid(np.dot(X, theta))
grad = 1/m*np.dot(X.T, h - y)
#添加项
theta[0,0] = 0
gradadd = lamb/m*theta
grad = grad + gradadd
return grad.flatten() #求特征矩阵
def mapFeature(X1, X2):
degree = 6
out = np.ones((np.size(X1),1))
for i in range(1, degree+1):
for j in range(0, i+1):
res = np.multiply(np.power(X1, i-j), np.power(X2, j))
out = np.insert(out, np.size(out[0, :]), values=res, axis=1)
return out #读取数据,第一列是成绩1,第二列是成绩2,第三列是yes/no
data = np.loadtxt('ex2data2.txt', delimiter=',', dtype='float')
m = np.size(data[:, 0]) #绘制样本点
X = data[:, 0:2]
y = data[:, 2:3]
pos = np.where(y == 1)[0]
neg = np.where(y == 0)[0]
X1 = X[pos, 0:2]
X0 = X[neg, 0:2]
plt.plot(X1[:, 0], X1[:, 1], 'k+')
plt.plot(X0[:, 0], X0[:, 1], 'yo')
plt.xlabel('Microchip Test 1')
plt.ylabel('Microchip Test 2')
plt.legend(labels=['y = 1', 'y = 0']) #数据初始化
X = mapFeature(X[:, 0], X[:, 1])
# print(X)
lamb = 1
initial_theta = np.zeros(np.size(X, 1)) #求解最优解
result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, y, lamb), method='TNC', jac=gradient)
# print(result)
cost = result.fun
theta = result.x
print('theta:', theta)
print('cost:', cost) #绘制决策边界
u = np.linspace(-1, 1.5, 50)
v = np.linspace(-1, 1.5, 50)
z = np.zeros((np.size(u),np.size(v)))
theta = np.array(theta).reshape((np.size(theta), 1))
for i in range(0, np.size(u)):
for j in range(0, np.size(v)):
z[i, j] = np.dot(mapFeature(u[i], v[j]), theta)
# print(z)
plt.contour(u, v, z.T, [0])
plt.show() #计算准确率
p = np.round(sigmoid(np.dot(X,theta)))
acc = np.mean(p==y)*100
print('Train Accuracy: ',acc,'%')
运行结果:


机器学习作业(二)逻辑回归——Python(numpy)实现的更多相关文章
- 机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)
机器学习二 逻辑回归作业 作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 机器学习算法整理(二)梯度下降求解逻辑回归 python实现
逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...
- scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业(逻辑回归)
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...
- 【机器学习基础】逻辑回归——LogisticRegression
LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
随机推荐
- App 抓包提示网络异常怎么破?
背景 当你测试App的时候,想要通过Fiddler/Charles等工具抓包看下https请求的数据情况,发现大部分的App都提示网络异常/无数据等等信息.以"贝壳找房"为例: F ...
- laravel web server设置远程访问及原理
laravel中可以用命令行php artisan serve 启动web server,并通过localhost:8000访问项目. 但是因为开发环境为虚拟机部署项目,然后通过端口访问,所以开启服务 ...
- ArcMap制图遇到的小问题
情况一 在attributes table中查看,发现是一条记录,实际上这一条记录由多个面要素组合而成,且彼此间没有交集,现在需要把他们全部分开来,单独独立变成一条要素记录 方法: Editor--& ...
- iOS闪退日志的收集和解析
在开发过程中往往会遇见有个别用户或者测试人员反馈app的闪退现象,而项目一般集成的统计闪退的第三方库是笼统的统计了所有的闪退信息,无法去定位某一个用户提出的某一个时间点的某一个闪退问题,于是乎这个时候 ...
- windows快捷键记录
-1: 装完iis, run -> inetmgr 弹出iis管理器 0.按住Shift键右击鼠标打开命令行窗口 1.ODBC数据源管理器run->odbcad32 2.计算机管理(查看设 ...
- PHP0024:PHP 博客项目开发
- CMD命令下图片合成一句话木马命令
非常简单,我们只需要一张图片1.jpg一句话木马写好的php文件 1.php之后我们进入到命令行.注意:将php文件和图片文件放到同一目录下,cmd也要跳转到放文件的目录下之后执行命令 copy .j ...
- python中的“赋值与深浅拷贝”
Python中,赋值与拷贝(深/浅拷贝)之间是有差异的,这主要源于数据在内存中的存放问题,本文将对此加以探讨. 1 赋值(添加名字) 赋值不会改变内存中数据存放状态,比如在内存中存在一个名为data的 ...
- 牛客网剑指offer第13题——调整数组顺序使得奇数位于偶数前面
题目来源:剑指offer 题目: 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变 ...
- JavaSE学习笔记(12)---线程
JavaSE学习笔记(12)---线程 多线程 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,安装了多个程序,并发指的是在 ...