T1 JZOJ5535. 登机(board)

比赛时

一在题目列表里看到题目标题,就热血沸腾了,不知道为什么,老师居然放了一道之前做过的题目。我清楚地记得这题是DP,于是很快码了出来。讲一讲我的思路,让你划分区域使乘客的登机难度总和最少,很容易可以看出是DP,我们就试着表示出阶段和状态,我们设\(f_{i,j}\)表示当前在第\(i\)到第\(i+1\)行划分区域,划分了\(j\)次的最小登机难度。那么我们就考虑一下转移,设\(k\)表示上一次划分区域的地方,那么从第\(k+1\)~\(i\)行是我们新划分出来的区域,那么他对答案的贡献在第\(i+1\)~\(s\)行,我们断开以后就不再影响后面的所有行。于是,就要想一个方法,可以快速求出某几个连续的行对后面几个连续的行的贡献,我们设\(a_{i,j}\)表示第\(i\)行对第\(j\)行的贡献,我们可以对这个数组进行二维前缀和,这个相信大家都会,得到一个数组\(sum_{i,j}\)就可以轻松的求出贡献了。设当前划分区域的位置为\(i\),已经划分了\(j\)次,上一次划分的位置为\(k\),状态转移方程为\(f_{i,j}=min(f_{k,j-1}-(sum_{i,s}-sum_{i,i}-sum_{k,s}+sum_{k,i}),f_{i,j})\),初值:\(f_{0,0}=sum_{s,s}\)

之后

我的思想稍微想复杂的一点,不过也差不多


T2 JZOJ5536. 游戏

题目大意

给出一个\(W×H\)的矩阵,要你用\(w×h\)的小纸片去覆盖它,小纸片的边与大矩阵平行,且长宽对应(不能旋转\(90°\)),使大矩 阵不能再被一张小纸片覆盖,求最小需要多少张小纸片。

比赛时

这题我也做过。这是一道很简单的结论题。这里我们设\(n=h\),\(m=w\),避免误解。我们很容易想到,一张\(n*m\)的小纸片,他能覆盖的面积是\(2n*2m\),那么很容易推出来一个公式:\(ans=((W/m+1)/2)*((H/n+1)/2)\),为什么要\(+1\)呢,主要是避免特殊情况的余数影响答案(同学们可以在草稿纸上画一画),那要是整除了呢,那也不会影响答案。

之后

同学们的另一个公式:\(ans=(\lfloor \frac{W-m}{2w} \rfloor+1)*(\lfloor \frac{H-n}{2h} \rfloor+1)\)

纪中集训2020.02.03【NOIP提高组】模拟B 组总结反思——登机(board),游戏(game),分组(group)的更多相关文章

  1. 纪中集训2020.02.05【NOIP提高组】模拟B 组总结反思——【佛山市选2010】组合数计算,生成字符串 PPMM

    目录 JZOJ2290. [佛山市选2010]组合数计算 比赛时 之后 JZOJ2291. [佛山市选2010]生成字符串 比赛时 之后 JZOJ2292. PPMM 比赛时 之后 JZOJ2290. ...

  2. 纪中集训2020.02.09【NOIP提高组】模拟B 组总结反思

    目录 JZOJ.1747[NOIP2014模拟11.5]无穷迷宫 比赛时 之后 总结 JZOJ1478.[NOIP2014模拟11.5]近似乘积 比赛时 之后 总结 JZOJ3926. [NOIP20 ...

  3. 「中山纪中集训省选组D1T1」最大收益 贪心

    题目描述 给出\(N\)件单位时间任务,对于第\(i\)件任务,如果要完成该任务,需要占用\([S_i, T_i]\)间的某个时刻,且完成后会有\(V_i\)的收益.求最大收益. 澄清:一个时刻只能做 ...

  4. 纪中集训总结 && 新学期目标

    于是紧接着又发了第二篇. 关于这次去完纪中以后的感想,写完后总觉得少了些什么,因此就发一篇小目标集合来凑数补充一下吧. Part I:图论 这方面我去之前就是很有自信,事实证明像基础的最短路.生成树什 ...

  5. 纪中集训 Day 0?

    好吧昨天的等到今天才来写,现在超不想刷题,来写下blog吧= = 坐了近10H的火车终于来到了中山市 火车上在看空之境界,等有时间补下动画吧= = 到了宿舍各种不习惯(现在才发现还是母校好QAQ)然后 ...

  6. 纪中集训 Day 2

    今天(其实是昨天= =)早上起来发现好冷好冷啊= = 吃完饭就准备比赛了,好吧B组难度的题总有一道不知到怎么写QAQ 太弱了啊!!! 蒟蒻没人权啊QAQ 今天第4题不会写,在这里说说吧 题目的意思就是 ...

  7. 纪中集训 Day1

    今天早上起来吃饭,发现纪中伙食真的是太差了!!!什么都不热,早餐的面包还好,然后就迎来了美好的早晨= = 早上做一套题,T1T2果断秒,T3一看就是noi原题,还好看过题解会写,然后就愉快的码+Deb ...

  8. 【纪中集训】2019.08.02【NOIP提高组】模拟 A 组TJ

    \(\newcommand{\RNum}[1]{\uppercase\expandafter{\romannumeral #1\relax}}\) T1 一道可以暴力撵标算的题-- Descripti ...

  9. 纪中OJ 2019.02.15【NOIP提高组】模拟 B 组 梦回三国 比赛题解(第一个)

    声明 旁边的同学小 H(胡)对我说: “哟,比赛拿了 140,强!要知道,如果哥第三题 AC 了,哥就 230 了,你个废柴!!!(比赛实际分数 130 额呵)” 顿时,千万草泥马从我心中奔腾而过:你 ...

随机推荐

  1. Go语言实现:【剑指offer】二维数组中的查找

    该题目来源于牛客网<剑指offer>专题. 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一 ...

  2. 万字分享,我是如何一步一步监控公司MySQL的?

    整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 更多优选 一口气说出 9种 分布式ID生成方式,面试官有点懵了 ...

  3. new 的实现原理

    自己封装一个new <script> // 创建一个构造函数 function Father() { this.name = '小红'; this.eat = function () { ...

  4. golang的timer一些坑

    本文代码部分基于dive-to-gosync-workshop的代码 Golang 的NewTimer方法调用后,生成的timer会放入最小堆,一个后台goroutine会扫描这个堆,将到时的time ...

  5. vue-cli项目传到服务器后打不开的问题

    1.vue-cli项目执行dev可以打开网站,直接点击文件或发布后却打不开的问题   webpack.prod.conf.js: output: { ....... publicPath:'./'  ...

  6. 用msi安装MySQL时MySQL Server组件不能安装,或安装失败

    我的环境:       MySQL8.0.15,       win10 错误描述:在安装MySQL时,如果MySQL Server组件提示不能安装,错误提示是:VS 2015没有安装或安装失败.原因 ...

  7. Binder基本使用

    Android开发中,Binder是一种跨进程通信方式,而使用AIDL可以实现Binder的工作. 如何使用它是了解它的第一步,本文章主要记录使用Binder的一些步骤.(代码思路参考<Andr ...

  8. Android事件分发与责任链模式

    一.责任链模式 责任链模式是一种行为模式,为请求创建一个接收者的对象链.这样就避免,一个请求链接多个接收者的情况.进行外部解耦.类似于单向链表结构. 优点: 1. 降低耦合度.它将请求的发送者和接收者 ...

  9. Hibernate(六)--缓存策略

    缓存: 缓存就是数据库数据在内存中的临时容器,包括数据库数据在内存中的临时拷贝,它位于数据库与数据库访问中间层,ORM在查询数据时,首先会根据自身的缓存管理策略,在缓存中查找相关数据,如果发现所需的数 ...

  10. day19 几个模块的学习

    # 模块本质上就是一个 .py 文件# 数据类型# 列表.元组# 字典# 集合.frozenset# 字符串# 堆栈:特点:先进后出# 队列:先进先出 FIFO # from collections ...