Bishops Alliance—— 最大上升子序列
原题链接:http://codeforces.com/gym/101147/problem/F
题意:n*n的棋盘,给m个主教的坐标及其私有距离p,以及常数C,求位于同一对角线上满足条件:dist(i, j) >= p[i]^2 + p[j]^2 + C
的主教集合的元素个数最大值。
解题思路:
上述条件可以等价为:
d(j) - d(i) +1 >= p[i]^2 + p[j]^2 + C // d(i) 为第i个主教相对于该对角线顶点的距离
d(j) - p[j]^2 - C + 1>= d(i) + p[i]^2
设 f(i) = d(i) + p[i] ^2, g(i) = d(i) - p[i]^2 - C + 1
下面考虑一条对角线,设 c[x] 为长度为x 的最后一个主教编号,例如c[len] = i 代表长度为len的防线最后一个主教编号为i。
(特别的,c[0] = 0, f(0) = -INF )
首先将该对角线上的主教按 d(i) 排序, len 为当前最大长度+1,依次查询每一个主教并同时更新最大长度, 伪代码如下:
对当前查询的主教u
j = lower_bound(c, c+len,u,cmp) - c
if j =len && g(u) >= f(c[j-1])
c[len++] = u
if j != len && g(u) >= f(c[j-1])
c[j] = u
注意: 数据范围为 LL
代码如下:
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = +;
typedef long long LL;
#define INF 999999999999999999LL
vector<int> D1[*maxn];
vector<int> D2[*maxn]; int c[maxn];
int row[maxn], col[maxn], p[maxn];
int n, m, C;
//计算对角线编号
int dig_id1(int x, int y) {return x-y+n;}
int dig_id2(int x, int y) {return x+y;} int d1(int i) {return min(row[i], col[i]);}
int d2(int i) {return min(n-row[i]+, col[i]);} LL f1(int i) {return !i ? -INF : d1(i) + LL(p[i])*p[i];}
LL f2(int i) {return !i ? -INF : d2(i) + LL(p[i])*p[i];} LL g1(int i) {return d1(i) - LL(p[i])*p[i] - C + ;}
LL g2(int i) {return d2(i) - LL(p[i])*p[i] - C + ;} bool cmpd1(int i, int j) {return d1(i) < d1(j);}
bool cmpd2(int i, int j) {return d2(i) < d2(j);}
bool cmp1(const int& a,const int& b) {return f1(a) < f1(b);}
bool cmp2(const int& a,const int& b) {return f2(a) < f2(b);}
LL (*f[])(int) ={
f1,
f2
};
LL (*g[])(int) = {
g1,
g2
};
bool (*cmp[])(const int& ,const int& ) = {
cmp1,
cmp2
}; int cal(vector<int> &D,int flag) {
if(!D.size()) return ;
if(flag == ) sort(D.begin(), D.end(), cmpd1);
else sort(D.begin(), D.end(), cmpd2);
for(int i = ; i <= D.size(); i++) c[i] = ;
int len = ;
int j;
for(int i = ; i < D.size(); i++){
int u = D[i];
j = lower_bound(c, c+len, u, cmp[flag]) - c;
if(j == len && g[flag](u) >= f[flag](c[j-])) {
c[len++] = u;
}
if(j != len && g[flag](u) >= f[flag](c[j-])) {
c[j] = u;
}
}
return len - ;
}
#define fin stdin
int main() {
// FILE * fin;
// fin = fopen("bishops.in", "r");
int T;
fscanf(fin, "%d", &T);
while(T--) {
fscanf(fin, "%d%d%d", &n, &m, &C);
for(int i = ; i <= *n; i++) D1[i].clear();
for(int i = ; i <= *n; i++) D2[i].clear();
for(int i = ; i <= m; i++) {
fscanf(fin, "%d%d%d", &row[i], &col[i], &p[i]);
int id1 = dig_id1(row[i], col[i]);
int id2 = dig_id2(row[i], col[i]);
D1[id1].push_back(i);
D2[id2].push_back(i);
}
int ans = ;
for(int i = ; i <= *n; i++) {
ans = max(ans, cal(D1[i], ));
ans = max(ans, cal(D2[i], ));
}
printf("%d\n", ans);
}
return ;
}
Bishops Alliance—— 最大上升子序列的更多相关文章
- GYM - 101147 F.Bishops Alliance
题意: 一个n*n的棋盘,有m个主教.每个主教都有自己的权值p.给出一个值C,在棋盘中找到一个最大点集.这个点集中的点在同一条对角线上且对于点集中任意两点(i,j),i和j之间的主教数(包括i,j)不 ...
- 【Mutual Training for Wannafly Union #1 】
A.Phillip and Trains CodeForces 586D 题意:过隧道,每次人可以先向前一格,然后向上或向下或不动,然后车都向左2格.问能否到达隧道终点. 题解:dp,一开始s所在列如 ...
- 2016-2017 ACM-ICPC, Egyptian Collegiate Programming Contest (ECPC 16) 题解
题目链接:http://codeforces.com/gym/101147 2017/8/27日训练赛,题目情况9/11,Rank 4/79. A. The game of Osho 题意:定义一个子 ...
- 2016-2017 ACM-ICPC, Egyptian Collegiate Programming Contest (ECPC 16)
A.The game of Osho(sg函数+二项展开) 题意: 一共有G个子游戏,一个子游戏有Bi, Ni两个数字.两名玩家开始玩游戏,每名玩家从N中减去B的任意幂次的数,直到不能操作判定为输.问 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- [LeetCode] Is Subsequence 是子序列
Given a string s and a string t, check if s is subsequence of t. You may assume that there is only l ...
- [LeetCode] Wiggle Subsequence 摆动子序列
A sequence of numbers is called a wiggle sequence if the differences between successive numbers stri ...
随机推荐
- VirtualBox安装,VirtualBox安装CentOS
1.进入VirtualBox官网下载页,找到对应的版本 https://www.virtualbox.org/wiki/Downloads 按步骤安装好 2.进入CentOS官网下载页,找到对应的版本 ...
- php实现希尔排序
对于排序的算法我想大家首先想到的事 冒泡排序:快速排序:或者想起选择和插入排序: 今天的讲解并不是以上四种:而是希尔排序: 对18W个数字排序,时间比较(毫秒) 希尔排序 0.1s 就完成了,有点不 ...
- python ddt 实现数据驱动
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- hdu4267 线段树
开始敲了一发线段树,觉得可以暴力一点的过,tle了.后来进行修改,发现了问题. 后来一看大神的做法,由于1<=k<=10,所以对于不同的k,有55个余,找答案的时候只要找不同的k值满足条件 ...
- Hibernate中的Session对象 标签: hibernatesession 2017-01-22 22:10 238人阅读 评论(
Hibernate中的Session 大家在看hibernate视频的时候一定都发现了,每次要操作数据库,总是要新建一个session对象,Hibernate在对资料库进行操作之前,必须先取得Sess ...
- python 顺序传入
- 2019-10-23-WPF-使用-SharpDx-渲染博客导航
title author date CreateTime categories WPF 使用 SharpDx 渲染博客导航 lindexi 2019-10-23 21:10:13 +0800 2019 ...
- 2018-2-13-windows-10预览版升级win10-7月29-10240.16384
title author date CreateTime categories windows 10预览版升级win10 7月29 10240.16384 lindexi 2018-2-13 17:2 ...
- oracle函数 round(d1[,c1])
[功能]:给出日期d1按期间(参数c1)四舍五入后的期间的第一天日期(与数值四舍五入意思相近) [参数]:d1日期型,c1为字符型(参数),c1默认为j(即最近0点日期) [参数表]:c1对应的参数表 ...
- uva 11174 Stand in a Line (排列组合)
UVa Online Judge 训练指南的题目. 题意是,给出n个人,以及一些关系,要求对这n个人构成一个排列,其中父亲必须排在儿子的前面.问一共有多少种方式. 做法是,对于每一个父节点,将它的儿子 ...