RSA算法的基本原理
记得在我上初一的时候做过这么一道数学竞赛题,就是求7的222次方的个位数字。当时教材上介绍的解题方法是将222分解成4*55+2,然后算出7的2次方个个位数字即为要算的数值。当时年幼无知的我根本不了解整个过程为什么要这么计算,只知道根据规律也可以得出响应的结果,然后后来才知道这个里面蕴含着一个非常重要的定理。
欧拉定理:若n,a为正整数,且n,a互质,如果算出不大于n且与n互质的正整数个数φ(n),那么a的φ(n)次方除于n的余数为1.
用公式表明即为:
以3和5两个数为例,假设a=3,n=5,那么不大于5且与5互质的数有1,2,3,4四个数字,那么φ(n)=4,根据公式就可以得出来3的4次方81除于5余数是1.
再回到上题7的222次方的个位数字,其实这道题也就算要计算7的222次方除以10的余数。因为7和10是互质数且φ(10)=4,那么根据欧拉定理便有7的4次方(2401)除以10余数是1。当然无论多少个个位数为1的数相乘其个位数字仍然是1,所以整个题目就转变成算7的二次方了结果是9.
以上所讲的只是笔者曾经做过的一个无关痛痒的数学竞赛题,但是如今这个思想却成了目前地球上最重要的加密算法的基础。目前常用的加密算法主要分为对称加密和非对称加密两种。对称加密就是加密和解密密钥完全一样,这样以来加密解密过程简单而效率高,不过由于传输当中需要把密钥一并传输而是的安全性能下降;而非对称加密则是加密密钥和解密密钥彼此独立,这样使得安全性大大增加,而典型的非对称加密算法便是RSA算法。
RSA算法的基本步骤可以分为以下几步:(以假设A和B通信为例子)
1,A首先选择两个质数,假设这里选择,61和53,实际选择的质数都相当大
2,将两个数相乘得到3233,然后计算出不大于3233且和3233互质的数,根据欧拉函数的定义可以算出是φ(3233)=(61-1)*(53-1)=3120
3,寻找一个不大于3120的质数e,这里选择e=17,然后计算摸反元素,也就是计算一个整数d,是的e和d相乘的数除以3120余数为1。由于e=17,所以这一步可以写出以下等式:17*d = 3120k+1.由于K的值我们不关心,所以也可以写成17d+3120k=1.于是通过解这个二元一次不定方程就可以算出d来。通过辗转相除法计算出一组解为(2753,-15).此时加密公钥为(3233,17),私钥为(3233,2753).
4,真正个通信此时开始,假设A要把信息65发给B,实际上首先计算下式中的C:6517 ≡ C(mod 3233),这里计算出的C=2790。然后A将2790发给B
5,当B收到2790后解密,解密实际上就是计算下面的C:27902753 ≡ C (mod 3233),当然算出来就是65.此时加密解密的过程就结束了。
通过以上算法可以看出来,如果想破解RSA必须要根据公钥计算出私钥,要想通过3233和17计算出2753必须要首先得到φ(3233),当然直接去暴力计算φ(3233)必须首先找出来61和53这两个数字。不过可惜的是大数分解目前而言没有相对良好的算法,将一个四位数分解很容易,但是对于一个四十位数恐怕就不是那么容易了,真正强行计算首先还要实现大数相乘算法,两个很大的数相乘所耗费的时间远远不是一条imul指令可以完成的。
当然超级计算机和量子计算机的问世将会对RSA算法的可靠性产生极大威胁,但是随着计算机计算速度的不断提高RSA算法的密钥长度也会不断增长,其破解难度恐怕也会不断增加,但谁能笑到最后还是得等时间的答复。今天就只简单写了下RSA算法的基本原理和步骤,回头再写数学基础以及证明。
RSA算法的基本原理的更多相关文章
- 【转】基于RSA算法实现软件注册码原理初讨
1 前言 目前,商用软件和共享软件绝大部份都是采用注册码授权的方式来保证软件本身不被盗用,以保证自身的利益.尽管很多常用的许多软件系统的某些版本已经被别人破解,但对于软件特殊行业而言,注册码授权的方式 ...
- 一个基于RSA算法的Java数字签名例子
原文地址:一个基于RSA算法的Java数字签名例子 一.前言: 网络数据安全包括数据的本身的安全性.数据的完整性(防止篡改).数据来源的不可否认性等要素.对数据采用加密算法加密可以保证数据本身的安全性 ...
- 信息安全-5:RSA算法详解(已编程实现)[原创]
转发注明出处:http://www.cnblogs.com/0zcl/p/6120389.html 背景介绍 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加 ...
- RSA算法原理
一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA ...
- C#RSA算法实现+如何将公钥为XML格式转为PEM格式,给object-C使用
.net中,处于安全的考虑,RSACryptoServiceProvider类,解密时只有同时拥有公钥和私钥才可以.原因是公钥是公开的,会被多人持有.这样的数据传输是不安全的.C#RSA私钥加密,公钥 ...
- [已解决] 快速理解RSA算法
RSA算法基础详解 http://www.cnblogs.com/hykun/p/RSA.html RSA算法原理(一) http://www.ruanyifeng.com/blog/2013/06/ ...
- 公钥私钥和RSA算法
1, RSA算法原理(一) http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html 2, RSA算法原理(二) http: ...
- 跨越千年的RSA算法
转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...
- (转)RSA算法原理(二)
作者: 阮一峰 日期: 2013年7月 4日 上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解 ...
随机推荐
- jpa现有接口方法说明 (转https://www.cnblogs.com/rulian/p/6557471.html)
一.接口方法整理速查 下表针对于简单查询,即JpaRepository接口(继承了CrudRepository接口.PagingAndSortingRepository接口)中的可访问方法进行整理.( ...
- Tomcat调优详解
前言 在这里告诫一下那些感觉自己啥都会的朋友们,其实你会的可能只是皮毛,不要感觉这个东西以前已经做过了,就不想去做了 其实你还远没有达到精通的地步,遇到以前做过的东西,也要用心的再去做一遍,你可能会从 ...
- python opencv3 写字画圈画矩形
python opencv练习 自定义一张[512, 512, 3]的图像 在上面写写字,画画圈和矩形 显示 代码为: import cv2 import numpy as np img = np.z ...
- java——有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?
package java_day10; /* * 有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? */ public class Demo04 { public stat ...
- RAKsmart服务器受消费者青睐的原因
随着互联网的快速发展,网站建设变得越来越重要,现在很多做外贸网站的都会选择美国服务器来建设网站,近年来RAKsmart服务器受到广大站长的欢迎,那RAKsmart服务器受消费者青睐的关键是什么呢. 1 ...
- thinkphp 输入变量
在Web开发过程中,我们经常需要获取系统变量或者用户提交的数据,这些变量数据错综复杂,而且一不小心就容易引起安全隐患,但是如果利用好ThinkPHP提供的变量获取功能,就可以轻松的获取和驾驭变量了. ...
- 牛客多校第六场 J Upgrading Technology dp
题意: 有n个技能,一开始都是0级,第i个技能从j-1级升到j级,花费$c_{i,j}$,但是花费不一定是正的 所有的技能升到j级时,奖励$d_j$但是奖励也不一定是正的 题解: 用sum[i][j] ...
- JAVA 设计模式之 工厂模式详解
一.简单工厂模式 简单工厂模式(Simple Factory Pattern)是指由一个工厂对象决定创建出哪一种产品类 的实例.属于创建型模式,但它不属于 GOF,23 种设计模式 (参考资料: ht ...
- hibernate annotation 之 注解声明
@Entity 将一个 POJO 类注解成一个实体 bean ( 持久化 POJO 类 ) @Table 为实体 bean 映射指定具体的表,如果该注解没有被声明,系统将使用默认值 ( 即实体 bea ...
- day 81 Vue学习二之vue结合项目简单使用、this指向问题
Vue学习二之vue结合项目简单使用.this指向问题 本节目录 一 阶段性项目流程梳理 二 vue切换图片 三 vue中使用ajax 四 vue实现音乐播放器 五 vue的计算属性和监听器 六 ...