@description@

给定初始集合为 1 ~ N 的全集,并给定一个 K。

每次对于当前集合 S,你可以选择 S 中的一个元素 x,并将 x 从 S 中删除。

假如 x - 2 在 1 ~ N 的范围内且不在集合 S 中,在 S 中加入 x - 2。

假如 x + K 在 1 ~ N 的范围内且不在集合 S 中,在 S 中加入 x + K。

求最后可以得到的不同集合数量 mod M。

Constraints

1≤K≤N≤150, 108≤M≤109

Input

输入格式如下:

N K M

Output

输出不同集合数量 mod M。

Sample Input 1

3 1 998244353

Sample Output 1

7

@solution@

考虑假如 x 与 x-2 最后都要被删除,肯定应该先删 x 再删 x-2(先删 x-2 的话,再删 x 就又多出来一个 x-2)。

那么我们连边 x -> x-2,x -> x+K,表示 x 比 x-2, x+K 先删。

最后如果要求删除的点形成一个环,肯定无解。否则我们按照拓扑序来删必然是一个合法方案。

那么相当于对于这样一个图,有多少点集满足点集内的点不形成环。

考虑与 K 无关的那些边,会连成 1 <- 3 <- ... 与 2 <- 4 <- ... 两条链,一条奇数,一条偶数。

接下来将 K 分奇偶讨论,因为 K 是偶数时 x -> x+K 必然是在奇偶内部连边,而 K 为奇数时可以跨奇偶连边。

当 K 为偶数时,我们要避免 a -> a-2 -> ... a-K -> a 这样的环,其实就是不能选择超过 K/2 + 1 个连续点。

这个随便怎么 dp 都可以。

当 K 为奇数时。注意到最小环必然恰好经过 2 条 K 边(0,1 显然,> 2 可以缩成 2 条)。

我们先将图写成类似以下形式(假设 K = 3):

其实就是对于每个奇数 x,将 x 与 x + K 放在同一层。

这样有什么好处呢?注意到环的形式一定为 a -> a-2 -> ... b-K -> b -> b-2 -> ... a-K -> a(假设 a 为奇数),对应到图上即从 a 开始往上走到某一点 b-K,再往右走到 b,再往上走到 a-K 的地方。

等价地说,假如这样一条往上 + 往右 + 往上的路径包含 > K + 1 个点,就会形成环。

注意到这样一条路径没有往下的选择,所以我们就可以从上到下 dp。

定义 dp(i, j, k) 表示前 i 层,往上 + 往右 + 往上的路径包含 j 个点,右边偶数的链对应往上的点连续选中了 k 个。

k 这一维是为了方便我们得到新的 j(可能在 i 这个点直接往右走)。

注意往上 + 往右 + 往上,两个往上可以缩减成一个点,但必须要有往右的过程。

@accepted code@

#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 150;
int N, K, M;
int add(int a, int b) {return (a + b)%M;}
int mul(int a, int b) {return 1LL*a*b%M;}
int f[MAXN + 5][MAXN + 5];
void solve1() {
K /= 2, f[0][0] = 1;
for(int i=1;i<=N;i++) {
for(int j=0;j<=K;j++)
f[i][0] = add(f[i][0], f[i-1][j]);
for(int j=0;j<K;j++)
f[i][j+1] = add(f[i][j+1], f[i-1][j]);
}
int ans1 = 0, ans2 = 0;
for(int i=0;i<=K;i++)
ans1 = add(ans1, f[N/2][i]);
for(int i=0;i<=K;i++)
ans2 = add(ans2, f[(N+1)/2][i]);
printf("%d\n", mul(ans1, ans2));
}
int g[2*MAXN + 5][MAXN + 5][MAXN + 5];
void solve2() {
int p; g[0][0][0] = 1;
for(int i=2;i-K<=N;i+=2) {
for(int j=0;j<=N;j++)
for(int k=0;k<=K+1;k++)
g[i][0][0] = add(g[i][0][0], g[i-2][j][k]);
if( i <= N ) {
for(int j=0;j<=N;j++)
for(int k=0;k<=K+1;k++)
g[i][j+1][0] = add(g[i][j+1][0], g[i-2][j][k]);
}
if( i - K >= 1 ) {
for(int j=0;j<=N;j++) {
for(int k=1;k<=K;k++)
g[i][0][k+1] = add(g[i][0][k+1], g[i-2][j][k]);
g[i][0][0] = add(g[i][0][0], g[i-2][j][0]);
}
}
if( i <= N && i - K >= 1 ) {
for(int j=0;j<=N;j++)
for(int k=0;max(k,j+1)<=K;k++)
g[i][j+1][max(k+1,j+2)] = add(g[i][j+1][max(k+1,j+2)], g[i-2][j][k]);
}
p = i;
}
int ans = 0;
for(int j=0;j<=N;j++)
for(int k=0;k<=K+1;k++)
ans = add(ans, g[p][j][k]);
printf("%d\n", ans);
}
int main() {
scanf("%d%d%d", &N, &K, &M);
if( K % 2 == 0 ) solve1();
else solve2();
}

@details@

感觉 AGC 好像很喜欢出这种状态定义比较抽象,但是状态转移非常简单的 dp 题。

比如 AGC039E,或者说 AGC037D 都是这种类型的 dp。

你以为你绕了半天写出来的长代码就是正解了?

拜托,正解根本不足 100 行.jpg。

但是做了这么多 AGC 的 dp 题还是不会 QAQ。

@atcoder - AGC035E@ Develop的更多相关文章

  1. 【AtCoder】AtCoder Grand Contest 035 解题报告

    点此进入比赛 \(A\):XOR Circle(点此看题面) 大致题意: 给你\(n\)个数,问是否能将它们摆成一个环,使得环上每个位置都是其相邻两个位置上值的异或值. 先不考虑\(0\),我们假设环 ...

  2. AtCoder Grand Contest 035

    Preface Atcoder的题都好劲啊,都是我做不动的计数与构造 就当锻炼自己的思维能力了(基本都是bzt教的) A - XOR Circle bzt说这题数据太水了只要判一下所有数异或值是否为\ ...

  3. Codeforces & Atcoder神仙题做题记录

    鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...

  4. PLSQL Develop PlugIn 之脚本自动匹配补全工具CnPlugin

    插件位置:百度云 -- 开发工具空间 -- CnPlugin CnPlugin 支持PL/sql Developer 7.0以上版本,它可以根据 关键字+tab/space 来触发代码补全,而关键字. ...

  5. How to Develop blade and soul Skills

    How to Develop Skills Each skill can be improved for variation effects. Some will boost more strengt ...

  6. Server Develop (七) Linux 守护进程

    守护进程 守护进程,也就是通常说的Daemon进程,是Linux中的后台服务进程.它是一个生存期较长的进程,通常独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件.守护进程常常在系统引导装 ...

  7. android network develop(1)----doing network background

    Develop network with HttpURLConnection & HttpClient. HttpURLConnection  is lightweight with Http ...

  8. Gitlab的develop角色的人没有权限无法提交的问题解决方案

    问题 事情是这样的,最近跟几位同事搞一些东西,打算在Gitlab上建一个仓库,然后协同开发. 我建好仓库,将其他几位同事添加进来,角色分配为Develop. 之后提交初始代码到master分支后,他们 ...

  9. 国内android帮助文档镜像网站---http://wear.techbrood.com/develop/index.html

    http://wear.techbrood.com/develop/index.html

随机推荐

  1. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  2. C#里的应用程序域AppDomain

    首先,描述一下AppDomain是什么:当一个程序集被执行时,系统就会自动为其创建一个AppDomain,每一个AppDomain属于某个进程,一个进程内可以有多个AppDomain:每个AppDom ...

  3. GIT → 05:Git命令行操作

    5.1 打开命令行窗口 安装Git后,在资源管理器的空白处,单击鼠标右键打开窗口,点击 Git Bash Here ,打开Git命令行窗口,在窗口中可直接使用Linux命令操作: 5.2 初始化Git ...

  4. IE9没有内置鼠标手势,还要自己写

    写了个IE插件,然后获取鼠标,信息, 模拟了鼠标手势,在虚拟机里面测试,完全好使,但是现在又不敢在Win7上用了. 愁死了... 为了实现一个鼠标手势. 写的那破玩意,竟然50多K.....太大了.. ...

  5. farv

    http://weishu.me/ https://github.com/jimupon/VirtualXposed O:  ?  api 26 - vdex N: speed-profile M: ...

  6. H5C3--语义标签以及语义标签IE8兼容,表单元素新属性,度量器,自定义属性,dataList,网络监听,文件读取

    HTML5新增标签以及HTML5新增的api     1.H5并不是新的语言,而是html语言的第五次重大修改--版本     2.支持:所有的主流浏览器都支持h5.(chrome,firefox,s ...

  7. 下载额外数据文件失败 以下软件包要求安装后下载附加数据,但其数据无法下载或无法处理 ttf-mscorefonts-installer

    故障显示: 一些软件包的数据文件无法下载 以下软件包要求安装后下载附加数据,但其数据无法下载或无法处理. ttf-mscorefonts-installer 这是一个永久错误,系统中的这些软件包将无法 ...

  8. Congratulation!顺利通过-2019年6月份的PMP考试

    祝贺邮件 证书

  9. Hibernate QBC 简单收集

    Hibernate QBC 介绍: QBC(Query By Criteria)通过 API 来检索对象 主要由 Criteria 接口.Criterion 接口和 Exception 类组成,支持在 ...

  10. vs2015卸载、vs2008安装Visual Assist x

    卸载2015 参考博文 1. 手动卸载VS2015的主要部分: win10系统: 控制面板---程序和功能--Microsoft Visual Studio 2015---更改卸载 2. 下载工具并解 ...