POJ-3186_Treats for the Cows
Treats for the Cows
Time Limit: 1000MS Memory Limit: 65536K
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
5
1
3
1
5
2
Sample Output
43
Hint
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题意:给予一个数组,每次可以取前面的或者后面的,第k次取的v[i]价值为v[i]*k,问总价值最大是多少。
题解:一个区间DP题目,每一次取的时候可以由d[i+1][j]或者d[i][j-1]转移而来。
转移方程:dp[i][j]=max(dp[i+1][j]+p[i]*(n+i-j),dp[i][j-1]+p[j]*(n+i-j)); 其中n-(j-i)是第几次取。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn = 2050;
int dp[maxn][maxn];
int main()
{
int n,v[maxn],i,j;
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&p[i]);
dp[i][i]=p[i];
}
for(i=n;i>=1;i--)
for(j=i;j<=n;j++)
dp[i][j] = max(dp[i+1][j]+v[i]*(n-(j-i)),dp[i][j-1]+v[j]*(n-(j-i)));
printf("%d\n",dp[1][n]);
return 0;
}
POJ-3186_Treats for the Cows的更多相关文章
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)
题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
- POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...
- (简单) POJ 2387 Til the Cows Come Home,Dijkstra。
Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...
- POJ 2387 Til the Cows Come Home 【最短路SPFA】
Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...
- POJ 2456: Aggressive cows(二分,贪心)
Aggressive cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20485 Accepted: 9719 ...
随机推荐
- leetcode 448 - 476
448. Find All Numbers Disappeared in an Array Input: [4,3,2,7,8,2,3,1] Output: [5,6] 思路:把数组的内容和index ...
- php5 常量
<?php define("GREETING", "Welcome to w3cschool.cn!", true); echo greeting; ?& ...
- bootstrap-fileinput详细说明与使用
介绍 bootstrap-fileinput是一款非常优秀的HTML5文件上传插件,支持文件预览.多文件上传等一系列特性. 一款非常优秀的HTML5文件上传插件,支持bootstrap 3.x 和4. ...
- 华为 Mate8 Emui 5.0 安卓 7.0 root 记录
步骤: 0.备份手机全部资料 1.华为官网申请解锁码 (unlock password) http://emui.huawei.com/plugin/hwdownload/download 2.关闭手 ...
- Web三大组件之控制器组件Servlet(转载)
Servlet:主要用于处理客户端传来的请求,并返回响应.获取请求数据>处理请求>完成响应 过程:客户端发送请求----HTTP服务器接收请求,HTTP服务器只负责解析静态HTML界面,其 ...
- yield和return
yield 是用于生成器.什么是生成器,你可以通俗的认为,在一个函数中,使用了yield来代替return的位置的函数,就是生成器.它不同于函数的使用方法是:函数使用return来进行返回值,每调用一 ...
- linux追加中文字库,解决imagemagick 中文乱码的问题。
Windows下的字体丰富多样,而且显示的工整.漂亮. 所以自己想把windows上的字体移到Ubuntu下来.Windows下字体库的位置为C:\Windows\fonts,这里面包含所有windo ...
- MacBook下为要运行的.net core 项目指定sdk版本
安装完.net core 3.0,运行早期版本构建的项目遇到运行错误,查阅官方文档解决问题,特此记录!官方原文如下: SDK 使用最新安装的版本 SDK 命令包括 dotnet new 和 dotne ...
- SASS在HTML5移动应用开发中的应用方法
一.什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了SASS的主要用法.二.安装和使用 2.1 安装 SA ...
- WPF Popup实现拖动
问题一.popup总是置顶,遮挡其他窗口 最近发现popup设置打开后,总是会遮挡其他窗口,而我们只想让它仅仅在应用程序的上一层即可,并不像让它在最上面 解决方案是继承Popup重新定义控件Popup ...