Miller-Rabin素数检测算法

其基于以下两个定理。

  1. Fermat小定理

    若n是素数,则∀a(a̸≡0(modn))\forall a(a \not\equiv 0 \pmod{n})∀a(a̸​≡0(modn)),有an−1≡1(modn)a^{n-1} \equiv 1 \pmod{n}an−1≡1(modn).

  2. 二次探测定理

    若n是素数,则x2≡1(modn)x^2 \equiv 1 \pmod{n}x2≡1(modn)只有平凡根x=±1x=\pm1x=±1,即x=1,x=n−1x=1,x=n-1x=1,x=n−1.

费马小定理鼎鼎有名,而二次探测定理由ZpZ_pZp​是域,域中无零因子容易得到。

注意这两个定理都是叙述了素数的必要条件,而Miller-Rabin对于要检验的n,是选取若干个a,检验是否满足这两个必要条件。显然,如果某个必要条件不满足,那么断言不是素数是正确的。但是,选了好几个a,都满足这两个必要条件,n是质数还是合数是无法确定的,但是Miller-Rabin算法选择忽略这一点,直接断言n是素数。

换句话说,Miller-Rabin算法断言一个数不是素数一定是正确的,断言一个数是素数,则可能是错误的。但是,实际上,会被误判为素数的合数,是很少的。而且每选取一个符合条件的a,通过检验出错的概率不超过12\frac{1}{2}21​.因此实际应用中使用Miller-Rabin算法是可行的。

实际上,选取一个a,仅仅基于费马小定理给出的必要条件做断言的检测算法,被错误断言为素数的合数称作基于a的伪素数

而通过选取各个符合条件的a,仅仅基于费马小定理,进行断言的检测算法,被错误断言为素数的伪素数就是卡迈克尔数

具体算法

假设nnn是奇数,令n=m×2q(q≥1)n=m \times 2^q (q \geq 1)n=m×2q(q≥1),其中mmm是奇数.

对于序列am mod n,a2m mod n,a4m mod n,…,a2q×m mod na^m \bmod n, a^{2m} \bmod n, a^{4m} \bmod n,\ldots,a^{2^q \times m} \bmod nammodn,a2mmodn,a4mmodn,…,a2q×mmodn.

最后一项就是费马小定理中的an−1a^{n-1}an−1, 并且每一项都是前一项的平方。

我们一项一项往后计算。

  • 若当前项为1,后面每一项显然都是1。而根据二次探测定理,n是素数必须前面一项是1或n-1.如果不符合,断言不是素数;符合,断言是素数。

  • 若当前项不是1,暂时不断言,接着往后算。除非当前是最后一项了,那么断言不是素数。

当然,如果第一项是1,由于不存在二次探测的方程,所以不检验前面一项(或者认为前面一项符合条件)。

Code

使用了快速幂模和快速幂加模板mod_sys。下面代码只是miller-rabin核心代码。

 // 如果只是int范围内,可以将pow_v2改为pow,mlt改为普通乘法
bool miller_rabin(ll a, ll n, ll q, ll m, mod_sys& mod) {
a = mod.pow_v2(a, m);
bool is_ordinary = true;
for (int i = 0; i < q; ++i) {
if (a == 1) {
return is_ordinary;
} else {
is_ordinary = (a == n-1);
a = mod.mlt(a,a);
}
}
return (a==1)&&(is_ordinary); // 最后一项
} // 使用miller_rabin检测是否是素数
const int kCheckCnt = 8;
// 为了随机数
random_device rd;
mt19937_64 gen(rd());
bool miller_rabin(ll n) {
if (n == 2) return true;
if ((n <= 2) || (n&1^1)) return false;
// 2^q×m表示原本输入的n-1
ll m = n, q = 0;
do { m >>= 1; ++q; } while(m&1^1);
// 随机数生成,[1,n-1] 均匀分布
uniform_int_distribution<> dis(1, n-1);
mod_sys mod;
mod.set_mod(n);
for (int i = 0; i < kCheckCnt; ++i)
if (!miller_rabin(dis(gen), n, q, m, mod))
return false;
return true;
}

模板题推荐hdu2138

Miller-Rabin素数检测算法 acm模板的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  3. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  4. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  5. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  6. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. Miller-Rabin素数检测算法

    遇到了一个题: Description: Goldbach's conjecture is one of the oldest and best-known unsolved problems in ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. [terminal]终端仿真程序

    char * szCommAry[COMM_NUM]={ //屏幕属性命令,23 "\x1b[12h",//禁止本端回显,键盘数据仅送给主机 "\x1b[12l" ...

  2. Property - 特性(Python)

    Property - Python 特性 不同的书籍对 property 一词的翻译有所不同, 我们将 property 翻译成 '特性' 以区别于 attribute 一词. 先看看 propert ...

  3. javascript 对象api

    // Object 构造函数的属性: Object.prototype//可以为所有 Object 类型的对象添加属性 class A extends B{ constructor(){ super( ...

  4. 中小企业自建云WAF有多难?只需20分钟!而且:全程免费!

    以往,运营型的web为了安全目的,才使用WAF进行安全防护. 而现如今,WAF对企业web来说,已然成了刚需.为何?等保.网络安全法的硬性要求! 当然,这样要求显然是对的:没有网络安全,就没有国家安全 ...

  5. Flink1.9重大改进和新功能

    一.Flink1.9.0的里程碑意义 二.重构 Flink WebUI Flink社区讨论了现代化 Flink WebUI 的提案,决定采用 Angular 的最新稳定版来重构这个组件.从Angula ...

  6. Solr系列2-Solr服务安装

    1: Solr简介 1.1 简介: 1.2 下载: 2:Solr 安装 2.1 安装 2.2 目录结构 3 :启动Solr 3.1 启动 3.2使用Solr提供的测试数据 3.5 Solr配置文集 3 ...

  7. Windows下配置开机自启Tomcat服务

    给单位内部做了一个管理系统,部署项目要求服务器启动管理系统自启..直接给出操作流程. 一.配置环境变量 由于Tomcat启动依赖jdk,因此需要配置jdk与Tomcat两项环境变量,如系统已安装jdk ...

  8. Debian 10 安装无线网卡驱动 (rtl8822be)

    apt install firmware-realtek

  9. 手动使用I2C协议写入24C02C

    刚尝试用AT89C52单片机使用IIC总线协议读写AT24C02C,我忽然想能否用手动调整开关的方式写入AT24C02C?于是,便尝试了一下,结果果然成功了. 关于IIC总线,这篇文章写的很详细:ht ...

  10. 微信小程序入门笔记-小程序创建(2)

    1.工具下载 官方链接:https://developers.weixin.qq.com/miniprogram/dev/devtools/download.html 我选用的是稳定版 macOS 2 ...