能轻松背板子的FWT(快速沃尔什变换)
FWT应用
我不知道\(FWT\)的严格定义
百度百科和维基都不知道给一坨什么**东西
FWT(Fast Walsh Fransform),中文名快速沃尔什变换
然后我也不知道\(FWT\)到底是什么
你们怎么念FWT的反正我念扶卧塔
\(FFT\)当然可以做多项式卷积
形如\(C(k)=\sum_{i+j=k}f[i]g[j]\),很简单,大家都会
由于有这个性质所以也可做分治\(FFT\)
但是如果把\(i+j\)换一下操作符
变成\(C(k)=\sum_{i???j=k}f[i]g[j]\)
其中\(???\)可以是\(or,and,xor\)三种运算
这时就要用\(FWT\)来做特殊卷积了
结论
类似\(FFT\),把当前多项式\(A\)拆成前一半\(A_0\)和后一半\(A_1\)
注意不是奇数项和偶数项,只是前一半和后一半……(狗头保命)
也可知\(FWT\)也只能处理长度为\(2\)的次幂的多项式
or
\]
\]
and
\]
\]
xor
\]
\]
\(+\)就是每一位值加起来,不知道\(merge\)是什么东西?
其实就是两个多项式前后拼起来……(狗头保命)
所以就算不清楚原理背下结论也很容易写出板子
由于某些原因原理完全可以跳过不看
但还是懂一下比较好
原理
清真のor&and
令\(FWT(A)=A',A'[i]=\sum_{i|j=i}A[j]\),\(B\)同理
\(i|j=i\)就表示二进制下\(j\)一定是\(i\)的子集
这样好像可以满足\(C'[i]=A'[i]*B'[i]\),不懂可以写一写
大概就是\(A'[i]\)已经包含下标或起来\(=i\)的\(A\),\(B'[i]\)也是
所以\(A'[i],B'[i]\)里包含的每个数下标或起来都等于\(i\)
自然两个和乘起来就是两两配对的总和,即\(C'[i]=A'[i]*B'[i]\)
肯定不能枚举\(i\)的二进制子集因为太沙雕
然后试着把\(A\)拆成前半段\(A_0\)和后半段\(A_1\)
如果知道\(FWT(A_0),FWT(A_1)\),可以知道\(FWT(A)\)吗
是个学过FFT的人都知道应该可以
设当前多项式\(A\)的长度为\(2^k\),\(A_0,A_1\)长度为\(2^{k-1}\)
\(FWT(A)\)的前半段表示\(A\)的二进制位第\(k\)位填\(0\)
那么是它子集的好像有\(FWT(A_0)\)
\(FWT(A)\)的前半段表示\(A\)的二进制位第\(k\)位填\(1\)
是它子集的不仅有\(FWT(A_1)\),还有\(FWT(A_0)\)
大概就是这个亚子其实我也不是很清楚
所以\(FWT(A)\)前半段就是\(FWT(A_0)\),后半段就是\(FWT(A_0),FWT(A_1)\)加起来
于是就有了结论的\(FWT(A)=merge(FWT(A_0),FWT(A_0)+FWT(A_1))\)
至于\(IFWT\),就是已知\(A_0',A_1'\),求\(A_0,A_1\)
由于\(A_0'=A_0,A_1'=A_0+A_1\),所以\(A_0=A_0',A_1=A_1'-A_0'\)
这样就有了两个简单易懂易背的结论
对于\(and\)也可同理推一波操作,和\(or\)很像,结论、代码也很像
打对\(or\)就可以打对\(and\).jpg
鬼畜のxor
一看\(or\)和\(and\)的结论就很清真,其实是因为\(or\)和\(and\)很像
\(xor\)奇怪就奇怪在运算和\(or,and\)有很大区别
但\(xor\)卷积还是有优化的方法
令\(i\&j\)中\(1\)数量的奇偶性为\(i\)与\(j\)的奇偶性,那么\(i\)与\(k\)的奇偶性异或\(j\)和\(k\)的奇偶性等于\(i⊕j\)和\(k\)的奇偶性
设\(f(x)\)表示\(x\)在二进制下\(1\)的个数
\]
如果这样的话
\]
\]
对于\(or\),由于\(or,and\)同理,令
\]
结果和上面的是一样的
于是由这两种运算的优美性质自然而然的可以得到xor的规律
于是你就知道为什么xor那么鬼畜
FWT板子
#define mod 998244353
#define inv2 499122177
inline void fwt_or(ll f[],ll len,ll inv)
{
for (ll i=1;i<len;i<<=1)
for (ll j=0;j<len;j+=(i<<1))
for (ll k=0;k<i;++k)
f[i+j+k]=(inv*f[j+k]+f[i+j+k]+mod)%mod;
}
inline void fwt_and(ll f[],ll len,ll inv)
{
for (ll i=1;i<len;i<<=1)
for (ll j=0;j<len;j+=(i<<1))
for (ll k=0;k<i;++k)
f[j+k]=(f[j+k]+inv*f[i+j+k]+mod)%mod;
}
inline void fwt_xor(ll f[],ll len,ll inv)
{
for (ll i=1;i<len;i<<=1)
for (ll j=0;j<len;j+=(i<<1))
for (ll k=0;k<i;++k)
{
ll x=f[j+k],y=f[i+j+k];
f[j+k]=(x+y)%mod,f[i+j+k]=(x-y+mod)%mod;
if (inv==-1)(f[j+k]*=inv2)%=mod,(f[i+j+k]*=inv2)%=mod;
}
}
FWT搞完
本人版权意识薄弱……
别人早就会的东西我现在才学
\(FFT\)都会了一年了我才懂\(FWT\)
原因还是我太蔡了
能轻松背板子的FWT(快速沃尔什变换)的更多相关文章
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 浅谈算法——FWT(快速沃尔什变换)
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- FWT快速沃尔什变换
前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0 ...
- FWT快速沃尔什变换例题
模板题 传送门 #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #de ...
- FWT快速沃尔什变换——基于朴素数学原理的卷积算法
这是我的第一篇学习笔记,如有差错,请海涵... 目录 引子 卷积形式 算法流程 OR卷积 AND卷积 XOR卷积 模板 引子 首先,考虑这是兔子 数一数,会发现你有一只兔子,现在,我再给你一只兔子 再 ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
随机推荐
- Flask数据库的基本操作
Flask操作数据库基本操作 常用的SQLAlchemy字段类型 类型名 python中类型 说明 Integer int 普通整数,一般是32位 SmallInteger int 取值范围小的整 ...
- vue-router 使用二级路由去实现子组件的显示和隐藏
在需求中有一个这样的情况:一个组件在主组件和另外的组件中引用,且点击主组件和这个组件分别有相应得切换事件. 一开始的时候我是没有划分组件,把它们放到主组件内,这样便于切换,但是主主件内有独立的部分需要 ...
- QT MSVC2017 ratio chrono
如果引用了stdint.h可能会引发一些列错误,各种未申明和语法错误. 参加以下帖子解决问题 https://github.com/ftylitak/qzxing/issues/54 When com ...
- 磁盘设备在 Linux 下的表示方法
在 Linux 系统中磁盘设备文件的命名规则为: 主设备号 + 次设备号 + 磁盘分区号 对于目前常见的磁盘,一般表示为: sd[a-z]x 主设备号代表设备的类型,相同的主设备号表示同类型的设备. ...
- js 正则替换的使用方法
function compress(source) { const keys = {}; ⇽--- 存储目标key source.replace( /([^=&]+)=([^&]*)/ ...
- cookie、session、sessionStorage和localStorage
摘抄并整理后查 cookie 和 session 一般用来跟踪浏览器的用户身份 Session的存储方式 1. 使用cookie:保存 session id 的方式可以采用 cookie,这样在交互过 ...
- vue for 循环例子 2
demo <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf- ...
- Ubuntu 16.04 PHP5.6
Cannot add PPA: 'ppa:ondrej/php5-5.6' Ubuntu 16.04 PHP5.6 安装 Apache + PHP 5.6 + mysql 5.5 系统: Ubuntu ...
- python中模块和包的概念
1.模块 一个.py文件就是一个模块.这个文件的名字是:模块名.py.由此可见在python中,文件名和模块名的差别只是有没有后缀.有后缀是文件名,没有后缀是模块名. 每个文件(每个模块)都是一个独立 ...
- Linux批量解压缩脚本
#!/bin/bash # 批量解压缩脚本 # 作者: shaohsiung # 时间: // # Store all file names in the tmp directory with the ...