用C#表达式树优雅的计算24点
思路:一共4个数字,共需要3个运算符,可以构造一个二叉树,没有子节点的节点的为值,有叶子节点的为运算符
例如数字{1, 2, 3, 4},其中一种解的二叉树形式如下所示:

因此可以遍历所有二叉树可能的形式,4个数的全排列,从4种运算符中挑选3种运算符(运算符可以重复)
核心步骤1:需要遍历所有二叉树的可能,参考Eric Lippert的方法
class Node
{
public Node Left { get; private set; }
public Node Right { get; private set; }
public Node(Node left, Node right)
{
this.Left = left;
this.Right = right;
}
} static IEnumerable<Node> AllBinaryTrees(int size)
{
if (size == )
return new Node[] { null };
return from i in Enumerable.Range(, size)
from left in AllBinaryTrees(i)
from right in AllBinaryTrees(size - - i)
select new Node(left, right);
}
核心步骤2:对于任意一个二叉树,构造表达式树
static Expression Build(Node node, List<double> numbers, List<Func<Expression, Expression, BinaryExpression>> operators)
{
var iNum = ;
var iOprt = ; Func<Node, Expression> f = null;
f = n =>
{
Expression exp;
if (n == null)
exp = Expression.Constant(numbers[iNum++]);
else
{
var left = f(n.Left);
var right = f(n.Right);
exp = operators[iOprt++](left, right);
}
return exp;
};
return f(node);
}
核心步骤3:遍历4个数字的全排列,全排列参考这里
static IEnumerable<List<T>> FullPermute<T>(List<T> elements)
{
if (elements.Count == )
return EnumerableOfOneElement(elements); IEnumerable<List<T>> result = null;
foreach (T first in elements)
{
List<T> remaining = elements.ToArray().ToList();
remaining.Remove(first);
IEnumerable<List<T>> fullPermuteOfRemaining = FullPermute(remaining); foreach (List<T> permute in fullPermuteOfRemaining)
{
var arr = new List<T> { first };
arr.AddRange(permute); var seq = EnumerableOfOneElement(arr);
if (result == null)
result = seq;
else
result = result.Union(seq);
}
}
return result;
} static IEnumerable<T> EnumerableOfOneElement<T>(T element)
{
yield return element;
}
例如有四个数字{1, 2, 3, 4},它的全排列如下:
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
核心步骤4:从4种运算符中挑选3个运算符
static IEnumerable<IEnumerable<Func<Expression, Expression, BinaryExpression>>> OperatorPermute(List<Func<Expression, Expression, BinaryExpression>> operators)
{
return from operator1 in operators
from operator2 in operators
from operator3 in operators
select new[] { operator1, operator2, operator3 };
}
最后是Main函数:
static void Main(string[] args)
{
List<double> numbers = new List<double> { , , , };
var operators = new List<Func<Expression, Expression, BinaryExpression>> {
Expression.Add,Expression.Subtract,Expression.Multiply,Expression.Divide
}; foreach (var operatorCombination in OperatorPermute(operators))
{
foreach (Node node in AllBinaryTrees())
{
foreach (List<double> permuteOfNumbers in FullPermute(numbers))
{
Expression expression = Build(node, permuteOfNumbers, operatorCombination.ToList());
Func<double> compiled = Expression.Lambda<Func<double>>(expression).Compile();
try
{
var value = compiled();
if (Math.Abs(value - ) < 0.01)
Console.WriteLine("{0} = {1}", expression, value);
}
catch (DivideByZeroException) { }
}
}
}
Console.Read();
}
计算结果:
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
对于一些平时口算相对稍难的一些组合也是毫无压力,例如{1, 5, 5, 5}, {3, 3, 7, 7}, {3, 3, 8, 8},有兴趣的看官口算试试 :)
用C#表达式树优雅的计算24点的更多相关文章
- C#学习笔记(九):LINQ和表达式树
LINQ LINQ:语言集成查询(Language Integrated Query)是一组用于c#和Visual Basic语言的扩展.它允许编写C#或者Visual Basic代码以查询数据库相同 ...
- 程序猿修仙之路--数据结构之你是否真的懂数组? c#socket TCP同步网络通信 用lambda表达式树替代反射 ASP.NET MVC如何做一个简单的非法登录拦截
程序猿修仙之路--数据结构之你是否真的懂数组? 数据结构 但凡IT江湖侠士,算法与数据结构为必修之课.早有前辈已经明确指出:程序=算法+数据结构 .要想在之后的江湖历练中通关,数据结构必不可少. ...
- C#3.0新特性:隐式类型、扩展方法、自动实现属性,对象/集合初始值设定、匿名类型、Lambda,Linq,表达式树、可选参数与命名参数
一.隐式类型var 从 Visual C# 3.0 开始,在方法范围中声明的变量可以具有隐式类型var.隐式类型可以替代任何类型,编译器自动推断类型. 1.var类型的局部变量必须赋予初始值,包括匿名 ...
- c# 表达式树(一)
前言 打算整理c# 代码简化史系列,所以相关的整理一下,简单的引出一下概念. 什么是表达式树呢? 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 x < y 这样的 ...
- C# 委托、事件、表达式树理解
1.什么是委托? 委托是一种动态调用方法的类型,属于引用型. 委托是对方法的抽象和封装.委托对象实质上代表了方法的引用(即内存地址) 所有的异步都是委托 委托就是函数当入参 委托被各种语法糖遮 ...
- C# Lambda表达式详解,及Lambda表达式树的创建
最近由于项目需要,刚刚学完了Action委托和Func<T>委托,发现学完了委托就必须学习lambda表达式,委托和Lambda表达式联合起来,才能充分的体现委托的便利.才能使代码更加简介 ...
- C#中的Lambda表达式和表达式树
在C# 2.0中,通过方法组转换和匿名方法,使委托的实现得到了极大的简化.但是,匿名方法仍然有些臃肿,而且当代码中充满了匿名方法的时候,可读性可能就会受到影响.C# 3.0中出现的Lambda表达式在 ...
- LinQ实战学习笔记(三) 序列,查询操作符,查询表达式,表达式树
序列 延迟查询执行 查询操作符 查询表达式 表达式树 (一) 序列 先上一段代码, 这段代码使用扩展方法实现下面的要求: 取进程列表,进行过滤(取大于10M的进程) 列表进行排序(按内存占用) 只保留 ...
- C#在泛型类中,通过表达式树构造lambda表达式
场景 最近对爬虫的数据库架构做调整,需要将数据迁移到MongoDB上去,需要重新实现一个针对MongoDB的Dao泛型类,好吧,动手开工,当实现删除操作的时候问题来了. 我们的删除操作定义如下:voi ...
随机推荐
- mybatis mapper.xml 配置文件问题(有的错误xml是不报的) 导致服务无法启动 。
转载自 开源编程 一舟mybatsi xml编译报错,tomcat启动一直循环,导致内存溢出,启动失败 mapper.xml怎么知道有没有编译错误,哪个位置有错误 这应该是mybatis的一个bug, ...
- Delphi初学者,向万一老师致敬
今天首开博客园... 刚开始学习Delphi难免诸多不懂... 感谢万能的万一老师...
- 为AM335x移植Linux内核主线代码(35)使用platform中的GPIO
http://www.eefocus.com/marianna/blog/15-02/310352_46e8f.html 使用GPIO,当然可以自己编写驱动,比如之前的第34节,也可以使用Kernel ...
- LeetCode OJ-- Wildcard Matching **@
https://oj.leetcode.com/problems/wildcard-matching/ 模拟通配符的匹配 做法非常好 class Solution { public: bool isM ...
- 非官方windows下Cpython二进制扩展包下载地址
Unofficial Windows Binaries for Python Extension Packages url:http://www.lfd.uci.edu/~gohlke/pythonl ...
- Java中FileOutputStream和FileInputStream使用例子
package a.ab; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.F ...
- iOS AFNetWorking 下载pdf文档
+ (void)downLoadPdf:(NSString *)url pdf_id:(NSString *)pdf_id block:(APIFilePath)pdfFilePath { NS ...
- Robot Framework-DatabaseLibrary数据库(MySql)
Robot Framework-Mac版本安装 Robot Framework-Windows版本安装 Robot Framework-工具简介及入门使用 Robot Framework-Databa ...
- Webalizer解析nginx基本配置
先前使用了nginx做tomcat程序负载,后来需要解析日志.查看访问量.后来网上查了下,就使用了这个参考地址: http://daliang1215.iteye.com/blog/618829 .安 ...
- RHEL5.8使用yum安装应用时包冲突的处理
RHEL5.8使用yum安装应用时包冲突的处理办法记录,总体思路是如果发现包冲突的情形,那么就把冲突的包给删除掉,然后再重新使用yum安装即可. 冲突示例: Transaction Check Err ...