用C#表达式树优雅的计算24点
思路:一共4个数字,共需要3个运算符,可以构造一个二叉树,没有子节点的节点的为值,有叶子节点的为运算符
例如数字{1, 2, 3, 4},其中一种解的二叉树形式如下所示:

因此可以遍历所有二叉树可能的形式,4个数的全排列,从4种运算符中挑选3种运算符(运算符可以重复)
核心步骤1:需要遍历所有二叉树的可能,参考Eric Lippert的方法
class Node
{
public Node Left { get; private set; }
public Node Right { get; private set; }
public Node(Node left, Node right)
{
this.Left = left;
this.Right = right;
}
} static IEnumerable<Node> AllBinaryTrees(int size)
{
if (size == )
return new Node[] { null };
return from i in Enumerable.Range(, size)
from left in AllBinaryTrees(i)
from right in AllBinaryTrees(size - - i)
select new Node(left, right);
}
核心步骤2:对于任意一个二叉树,构造表达式树
static Expression Build(Node node, List<double> numbers, List<Func<Expression, Expression, BinaryExpression>> operators)
{
var iNum = ;
var iOprt = ; Func<Node, Expression> f = null;
f = n =>
{
Expression exp;
if (n == null)
exp = Expression.Constant(numbers[iNum++]);
else
{
var left = f(n.Left);
var right = f(n.Right);
exp = operators[iOprt++](left, right);
}
return exp;
};
return f(node);
}
核心步骤3:遍历4个数字的全排列,全排列参考这里
static IEnumerable<List<T>> FullPermute<T>(List<T> elements)
{
if (elements.Count == )
return EnumerableOfOneElement(elements); IEnumerable<List<T>> result = null;
foreach (T first in elements)
{
List<T> remaining = elements.ToArray().ToList();
remaining.Remove(first);
IEnumerable<List<T>> fullPermuteOfRemaining = FullPermute(remaining); foreach (List<T> permute in fullPermuteOfRemaining)
{
var arr = new List<T> { first };
arr.AddRange(permute); var seq = EnumerableOfOneElement(arr);
if (result == null)
result = seq;
else
result = result.Union(seq);
}
}
return result;
} static IEnumerable<T> EnumerableOfOneElement<T>(T element)
{
yield return element;
}
例如有四个数字{1, 2, 3, 4},它的全排列如下:
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
核心步骤4:从4种运算符中挑选3个运算符
static IEnumerable<IEnumerable<Func<Expression, Expression, BinaryExpression>>> OperatorPermute(List<Func<Expression, Expression, BinaryExpression>> operators)
{
return from operator1 in operators
from operator2 in operators
from operator3 in operators
select new[] { operator1, operator2, operator3 };
}
最后是Main函数:
static void Main(string[] args)
{
List<double> numbers = new List<double> { , , , };
var operators = new List<Func<Expression, Expression, BinaryExpression>> {
Expression.Add,Expression.Subtract,Expression.Multiply,Expression.Divide
}; foreach (var operatorCombination in OperatorPermute(operators))
{
foreach (Node node in AllBinaryTrees())
{
foreach (List<double> permuteOfNumbers in FullPermute(numbers))
{
Expression expression = Build(node, permuteOfNumbers, operatorCombination.ToList());
Func<double> compiled = Expression.Lambda<Func<double>>(expression).Compile();
try
{
var value = compiled();
if (Math.Abs(value - ) < 0.01)
Console.WriteLine("{0} = {1}", expression, value);
}
catch (DivideByZeroException) { }
}
}
}
Console.Read();
}
计算结果:
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * ( + ( + ))) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
( * (( + ) + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ) * ( + )) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
(( + ( + )) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
((( + ) + ) * ) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * ( * ( * ))) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
( * (( * ) * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ) * ( * )) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
(( * ( * )) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
((( * ) * ) * ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
(( * ( * )) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
((( * ) * ) / ) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
( * (( * ) / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
(( * ) * ( / )) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
((( * ) / ) * ) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
( / ( / ( * ))) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
(( * ) / ( / )) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * ( * ( / ))) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
( * (( / ) * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( / ) * ( * )) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
(( * ( / )) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
((( / ) * ) * ) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
( * ( / ( / ))) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
(( / ( / )) * ) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
( / (( / ) / )) =
对于一些平时口算相对稍难的一些组合也是毫无压力,例如{1, 5, 5, 5}, {3, 3, 7, 7}, {3, 3, 8, 8},有兴趣的看官口算试试 :)
用C#表达式树优雅的计算24点的更多相关文章
- C#学习笔记(九):LINQ和表达式树
LINQ LINQ:语言集成查询(Language Integrated Query)是一组用于c#和Visual Basic语言的扩展.它允许编写C#或者Visual Basic代码以查询数据库相同 ...
- 程序猿修仙之路--数据结构之你是否真的懂数组? c#socket TCP同步网络通信 用lambda表达式树替代反射 ASP.NET MVC如何做一个简单的非法登录拦截
程序猿修仙之路--数据结构之你是否真的懂数组? 数据结构 但凡IT江湖侠士,算法与数据结构为必修之课.早有前辈已经明确指出:程序=算法+数据结构 .要想在之后的江湖历练中通关,数据结构必不可少. ...
- C#3.0新特性:隐式类型、扩展方法、自动实现属性,对象/集合初始值设定、匿名类型、Lambda,Linq,表达式树、可选参数与命名参数
一.隐式类型var 从 Visual C# 3.0 开始,在方法范围中声明的变量可以具有隐式类型var.隐式类型可以替代任何类型,编译器自动推断类型. 1.var类型的局部变量必须赋予初始值,包括匿名 ...
- c# 表达式树(一)
前言 打算整理c# 代码简化史系列,所以相关的整理一下,简单的引出一下概念. 什么是表达式树呢? 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 x < y 这样的 ...
- C# 委托、事件、表达式树理解
1.什么是委托? 委托是一种动态调用方法的类型,属于引用型. 委托是对方法的抽象和封装.委托对象实质上代表了方法的引用(即内存地址) 所有的异步都是委托 委托就是函数当入参 委托被各种语法糖遮 ...
- C# Lambda表达式详解,及Lambda表达式树的创建
最近由于项目需要,刚刚学完了Action委托和Func<T>委托,发现学完了委托就必须学习lambda表达式,委托和Lambda表达式联合起来,才能充分的体现委托的便利.才能使代码更加简介 ...
- C#中的Lambda表达式和表达式树
在C# 2.0中,通过方法组转换和匿名方法,使委托的实现得到了极大的简化.但是,匿名方法仍然有些臃肿,而且当代码中充满了匿名方法的时候,可读性可能就会受到影响.C# 3.0中出现的Lambda表达式在 ...
- LinQ实战学习笔记(三) 序列,查询操作符,查询表达式,表达式树
序列 延迟查询执行 查询操作符 查询表达式 表达式树 (一) 序列 先上一段代码, 这段代码使用扩展方法实现下面的要求: 取进程列表,进行过滤(取大于10M的进程) 列表进行排序(按内存占用) 只保留 ...
- C#在泛型类中,通过表达式树构造lambda表达式
场景 最近对爬虫的数据库架构做调整,需要将数据迁移到MongoDB上去,需要重新实现一个针对MongoDB的Dao泛型类,好吧,动手开工,当实现删除操作的时候问题来了. 我们的删除操作定义如下:voi ...
随机推荐
- a:link,a:visited,a:hover,a:active
1:解释 link:连接平常的状态 visited:连接被访问过之后 hover:鼠标放到连接上的时候 active:连接被按下的时候 详细的: :hover版本:CSS1/CSS2 兼容性 ...
- 如何使用grunt工具
本文来源于同事的笔记,也是在网上查找的资料,记录分析的特别详细,对初学者来说简直不能再通俗易懂了,感谢原作者! 1.前言 选择Grunt原因 管理我们的文件依赖 随心所欲的批处理任务 整合常用的前端工 ...
- 关于Guid
GUID(全局统一标识符)是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.通常平台会提供生成GUID的API.生成算法很有意思,用到了以太网卡地址.纳秒级时间.芯片ID码和许多可 ...
- Objective 笔记C(第二天)
属性本质 •什么是属性 在OC中,属性提供了setter和getter方法,本质上属性就是方法,属性的值是由实例变量来保存的. • 属性的本质(一般三个部分组成) a.保存属性值的实例变量int _a ...
- 注册表(regedit)
注册表(Registry,繁体中文版Windows称之为登录档)是Microsoft Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息. 打开方式:1.开始>>运行.中 ...
- PHP会话Session
<?php //开启会话,PHP会话也提供多种存储方式,文件.数据库等 session_start(); if(isset($_GET['user'])) { $_SESSION['user'] ...
- 揭秘Sql2014新特性-tempdb性能提升
一直以来,在高负载,复杂的生产环境中,tempdb的压力是成为整个实例瓶颈的重要因素之一.微软的工程师们也在各个版本中不断优化它的使用.到了Sql Server2014又有了新的特性使其性能得temp ...
- Python time datetime常用时间处理方法
常用时间转换及处理函数: import datetime # 获取当前时间 d1 = datetime.datetime.now() print d1 # 当前时间加上半小时 d2 = d1 + da ...
- 在Linux CentOS 6.6上安装Python 2.7.9
CentOS 6.6自带的是Python 2.6.6,而编译llvm需要Python 2.7以上. checking for python... /usr/bin/python checking fo ...
- 微软BI 之SSRS 系列 - 如何设置页标题重复
开篇介绍 这个问题大家经常碰到,特意写一下如何解决这个小问题. 问题 默认情况下当报表超过一定的高度会自动分成多页. 第二页默认是看不到标题的. 解决方法 2012版本下在 Column Groups ...