1. 矩阵与映射

矩阵和映射包含两方面的关系:

  1. 简单:已知矩阵 M, 从向量 x 映射到 M * x. (注:矩阵与行向量的点乘)

  2. 稍微复杂:已知映射 x ->M * x, 求矩阵 M。

第一种情况直接运算就可以得到映射,就不详细写了,着重写第二种情况。

首先,假设 x 为 n 维行向量, M*x 为 m 维列向量,可以知道 M 是 m × n 大小的矩阵。在点乘里面,M 的列向量是基向量, x 向量的每个分量是线性组合的系数,M 矩阵可以写成:

怎么求出 v1, v2, ..., vn 向量呢?利用基向量带入即可得到:

例一 :将一张图片向右拉伸两倍,即 (x, y) 变为了 (2x, y), 它的变换矩阵可以这样求:

求得的变换矩阵就是 M = (v1, v2)

例二 :将一张图片逆时针旋转 90 度,变换矩阵 M 可以这样求:

求得的变换矩阵也是 M = (v1, v2)

同样,将图像旋转 theta 角度和平移操作 (translation) 也可以用这个方法求出变换矩阵。

根据上述方法虽然可以求出图像平移的变换矩阵,但是如果我们将 [0, 0] 左边进行变换,发现原点还是在原点,并没有平移,结果显然是错误的,这是什么原因呢?这里就不得不说一说线性映射了。

2. 线性映射

线性映射需要满足两个条件:

首先,左乘矩阵肯定是一个线性映射。考虑上面的例子,图像伸缩、旋转都符合两个条件,而图像平移不符合,因此不是线性映射,不存在变换矩阵。更进一步,什么时候才是一一映射呢?当矩阵 M 是一个满秩矩阵,此时 M 可逆,该映射是一个 one-to-one and onto 的线性映射。

Coding the Matrix (3):矩阵的更多相关文章

  1. 【Python】Coding the Matrix:Week 5: Dimension Homework 5

    这一周的作业,刚压线写完.Problem3 没有写,不想证明了.从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久. Problem 9在给定的基上分 ...

  2. [CareerCup] 1.7 Set Matrix Zeroes 矩阵赋零

    1.7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and column are ...

  3. Coding the Matrix Week 1 The Vector Space作业

    Coding the Matrix: Linear Algebra through Computer Science Applications 本周的作业较少,只有一个编程任务hw2.作业比较简单,如 ...

  4. Coding the Matrix作业Python Lab及提交方法

    Coding the Matrix: Linear Algebra through Computer Science Applications 这是一门用python实现矩阵运算的课,第一次作业就感觉 ...

  5. css3 matrix 2D矩阵和canvas transform 2D矩阵

    一看到“2D矩阵”这个高大上的名词,有的同学可能会有种畏惧感,“矩阵”,看起来好高深的样子,我还是看点简单的吧.其实本文就很简单,你只需要有一点点css3 transform的基础就好. 没有前戏,直 ...

  6. Leetcode 54:Spiral Matrix 螺旋矩阵

    54:Spiral Matrix 螺旋矩阵 Given a matrix of m x n elements (m rows, n columns), return all elements of t ...

  7. bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希

    题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...

  8. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  9. [LeetCode] Set Matrix Zeroes 矩阵赋零

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

随机推荐

  1. [麦先生]学习PDO循序渐进使用方式

    使用方式  特点一:支持跨数据库 1:首先实例化PDO,创建PDO对象的四个必备参数:host(哪一种类型的数据库,mysql/orcal/SQLserver等);dbname(数据库的名称);cha ...

  2. elastic search查询命令集合

    Technorati 标签: elastic search,query,commands 基本查询:最简单的查询方式 query:{"term":{"title" ...

  3. 【C#】3.算法温故而知新 - 快速排序

    快速排序相比冒泡排序,每次交换是跳跃式的.每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数放到基准点的右边.这样每次交换的时候就不会像冒泡排序一样只能在相邻 ...

  4. linux下安装+配置+卸载jdk

    一. 解压安装jdk在shell终端下进入jdk1.7.0_55.bin文件所在目录, 执行命令 ./jdk1.7.0_55.bin 这时会出现一段协议,连继敲回车,当询问是否同意的时候,输入yes, ...

  5. 边工作边刷题:70天一遍leetcode: day 89-1

    Smallest Rectangle Enclosing Black Pixels 要点:记题:这题有两个限制条件:所有black pixel是连通的(所以可以用binary search)以及给了一 ...

  6. UVA 12730 Skyrk's Bar --期望问题

    题意:有n个地方,现在要站人进去,而每两个人之间至少要隔k个空地,问这n个地方能站的人数的期望是多少. 分析:考虑dp[i]表示 i 个地方能站的期望数,从左往右推, 如果i-k-1<1,那么最 ...

  7. Ajax读取文件时出现的缓存问题

    对于Ajax缓存问题时,由于浏览器的版本问题,有时候当服务器端已更改文件中的内容,而客户端并得不到更新后的文件,而是延续之前的文件内容,解决办法是:在读取的文件内容后加一串的地址:JSON的格式为[{ ...

  8. MySQL数据库学习笔记(五)----MySQL字符串函数、日期时间函数

    一.常见字符串函数: 1.CHAR_LENGTH  获取长度(字符为单位) 2.FORMAT  格式化 3.INSERT  替换的方式插入 4.INSTR  获取位置 5.LEFT/RIGHT  取左 ...

  9. java 15-1 Collection集合的概述以及小功能介绍

     集合的由来:  我们学习的是面向对象语言,而面向对象语言对事物的描述是通过对象体现的,为了方便对多个对象进行操作,我们就必须把这多个对象进行存储.  而要想存储多个对象,就不能是一个基本的变量,而应 ...

  10. PHP 运行方式(PHP SAPI介绍)

    SAPI:Server Application Programming Interface 服务器端应用编程端口.它就是PHP与其它应用交互的接口,PHP脚本要执行有很多种方式,通过Web服务器,或者 ...