Coding the Matrix (3):矩阵
1. 矩阵与映射
矩阵和映射包含两方面的关系:
简单:已知矩阵 M, 从向量 x 映射到 M * x. (注:矩阵与行向量的点乘)
稍微复杂:已知映射 x -
>M * x, 求矩阵 M。
第一种情况直接运算就可以得到映射,就不详细写了,着重写第二种情况。
首先,假设 x 为 n 维行向量, M*x 为 m 维列向量,可以知道 M 是 m × n 大小的矩阵。在点乘里面,M 的列向量是基向量, x 向量的每个分量是线性组合的系数,M 矩阵可以写成:

怎么求出 v1, v2, ..., vn 向量呢?利用基向量带入即可得到:

例一 :将一张图片向右拉伸两倍,即 (x, y) 变为了 (2x, y), 它的变换矩阵可以这样求:
求得的变换矩阵就是 M = (v1, v2)
例二 :将一张图片逆时针旋转 90 度,变换矩阵 M 可以这样求:
求得的变换矩阵也是 M = (v1, v2)
同样,将图像旋转 theta 角度和平移操作 (translation) 也可以用这个方法求出变换矩阵。
根据上述方法虽然可以求出图像平移的变换矩阵,但是如果我们将 [0, 0] 左边进行变换,发现原点还是在原点,并没有平移,结果显然是错误的,这是什么原因呢?这里就不得不说一说线性映射了。
2. 线性映射
线性映射需要满足两个条件:

首先,左乘矩阵肯定是一个线性映射。考虑上面的例子,图像伸缩、旋转都符合两个条件,而图像平移不符合,因此不是线性映射,不存在变换矩阵。更进一步,什么时候才是一一映射呢?当矩阵 M 是一个满秩矩阵,此时 M 可逆,该映射是一个 one-to-one and onto 的线性映射。
Coding the Matrix (3):矩阵的更多相关文章
- 【Python】Coding the Matrix:Week 5: Dimension Homework 5
这一周的作业,刚压线写完.Problem3 没有写,不想证明了.从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久. Problem 9在给定的基上分 ...
- [CareerCup] 1.7 Set Matrix Zeroes 矩阵赋零
1.7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and column are ...
- Coding the Matrix Week 1 The Vector Space作业
Coding the Matrix: Linear Algebra through Computer Science Applications 本周的作业较少,只有一个编程任务hw2.作业比较简单,如 ...
- Coding the Matrix作业Python Lab及提交方法
Coding the Matrix: Linear Algebra through Computer Science Applications 这是一门用python实现矩阵运算的课,第一次作业就感觉 ...
- css3 matrix 2D矩阵和canvas transform 2D矩阵
一看到“2D矩阵”这个高大上的名词,有的同学可能会有种畏惧感,“矩阵”,看起来好高深的样子,我还是看点简单的吧.其实本文就很简单,你只需要有一点点css3 transform的基础就好. 没有前戏,直 ...
- Leetcode 54:Spiral Matrix 螺旋矩阵
54:Spiral Matrix 螺旋矩阵 Given a matrix of m x n elements (m rows, n columns), return all elements of t ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- [LeetCode] Set Matrix Zeroes 矩阵赋零
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...
随机推荐
- php redis 获取指定前缀的所有key
php redis 获取指定前缀的所有key 以laravel框架为例: $key = $this->redis->keys('db:shipping:shippingId:' . &qu ...
- C++find函数
头文件 #include <algorithm> 函数实现 template<class InputIterator, class T> InputIterator find ...
- FIR数据广播结构-提高时钟速率
直接型的信号流图 采用转置得到广播结构的信号流图 对于一个常系数四阶的FIR滤波器 直接型的RT L结构如下: 转置后的RTL结构
- UESTC 882 冬马党 --状压DP
定义:dp[i][j]为状态为j时,第i行符合条件的状态数 转移方程:dp[i][j] += dp[i-1][t] //t为上一行状态,与当前行不冲突. 从第一行开始向下枚举,每次枚举当前行的状态 ...
- UESTC 912 树上的距离 --LCA+RMQ+树状数组
1.易知,树上两点的距离dis[u][v] = D[u]+D[v]-2*D[lca(u,v)] (D为节点到根节点的距离) 2.某条边<u,v>权值一旦改变,将会影响所有以v为根的子树上的 ...
- Codeforces Round #267 Div.2 D Fedor and Essay -- 强连通 DFS
题意:给一篇文章,再给一些单词替换关系a b,表示单词a可被b替换,可多次替换,问最后把这篇文章替换后(或不替换)能达到的最小的'r'的个数是多少,如果'r'的个数相等,那么尽量是文章最短. 解法:易 ...
- TableLayout(表格布局)
表格布局模型以行列的形式管理子控件,每一行为一个TableRow的对象,当然也可以是一个View的对象.TableRow可以添加子控件,每添加一个为一列. TableLayout属性: android ...
- 给vs2010安装上cocos2d-x的模版
开发环境:OS(WINDOWS 8.1 X64 企业版) cocos2d-x 2.2.1 vs2010 想给vs安装上cocos的模版,执行InstallWizardForVS2010.js,老是提 ...
- Jira-Clone与发邮件的使用
1.克隆问题 包括两部分,先进行Clone,再进行移动 a.选择要克隆的问题,点击More Actions-Clone,在弹出框“复制问题”中,点击“创建”按钮即克隆成功 b.移动问题,点击More ...
- mongoVUE1.5.3 破解方法
MongoVUE是个免费软件,但超过15天后功能受限.可以通过删除以下注册表项来解除限制: [HKEY_CURRENT_USER\Software\Classes\CLSID\{B1159E65-82 ...