cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering
k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells.
The problem is computationally difficult (NP-hard); however, there are efficient heuristic algorithms that are commonly employed and converge quickly to a local optimum. These are usually similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach employed by both algorithms. Additionally, they both use cluster centers to model the data; however, k-means clustering tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows clusters to have different shapes.
The algorithm has a loose relationship to the k-nearest neighbor classifier, a popular machine learning technique for classification that is often confused with k-means because of the k in the name. One can apply the 1-nearest neighbor classifier on the cluster centers obtained by k-means to classify new data into the existing clusters. This is known as nearest centroid classifier or Rocchio algorithm[citation needed].
cluster analysis in data mining的更多相关文章
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Cluster analysis
https://en.wikipedia.org/wiki/Cluster_analysis Cluster analysis or clustering is the task of groupin ...
- Data Mining的十种分析方法——摘自《市场研究网络版》谢邦昌教授
Data Mining的十种分析方法: 记忆基础推理法(Memory-Based Reasoning:MBR) 记忆基础推理法最主要的概念是用已知的案例(case)来预测未来案例的一些属 ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 论文翻译:Data mining with big data
原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and dat ...
- 18 Candidates for the Top 10 Algorithms in Data Mining
Classification============== #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morga ...
随机推荐
- 【HTML5】Application Cache应用程序缓存
HTML5 引入了应用程序缓存,这意味着 web 应用可进行缓存,并可在没有因特网连接时进行访问. 应用程序缓存为应用带来三个优势: 离线浏览 - 用户可在应用离线时使用它们 速度 - 已缓存资源加载 ...
- web应用配置
tomcat 的 server.html 配置文件 加在</Host>之上 <Context path=”/itcast” docBase=”c:\news” /> path虚 ...
- Hark的数据结构与算法练习之锦标赛排序
算法说明 锦标赛排序是选择排序的一种. 实际上堆排序是锦标赛排序的优化版本,它们时间复杂度都是O(nlog2n),不同之处是堆排序的空间复杂度(O(1))远远低于锦标赛的空间复杂度(O(2n-1)) ...
- hud1166 敌兵布阵
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- 洗衣店专用手持智能POS PDA手持设备 上门收衣 现场刷卡 打印票据 开单系统
手持上门收衣设备通过wifi或者3G手机卡等进行联网,功能便捷强大,多功能一体同步使用,通过手持机上门收.取衣物,快速开单收衣消费.取货.新建会员.现场办理会员发卡.手持机读发会员卡和会员用卡消费等. ...
- Kmp 算法模板 C
/** * name:KMP * time:2012-11-22 * 字符串快速匹配 */ #include<stdio.h> #include<string.h> typed ...
- POJ2407 Relatives(欧拉函数)
题目问有多少个小于n的正整数与n互质. 这个可以用容斥原理来解HDU4135.事实上这道题就是求欧拉函数$φ(n)$. $$φ(n)=n(1-1/p_1)(1-1/p_2)\dots(1-1/p_m) ...
- WPF 文本框添加水印效果
有的时候我们需要为我们的WPF文本框TextBox控件添加一个显示水印的效果来增强用户体验,比如登陆的时候提示输入用户名,输入密码等情形.如下图所示: 这个时候我们除了可以修改TextBox控件的控件 ...
- Android 与 IIS服务器身份验证
1)基础验证: /** * 从服务器取图片 * * @param url * @return */ public void getHttpBitmap(final String url) { new ...
- ios clang: error: linker command failed with exit code 1 (use -v to see invocation)解决方法
当xcode编译时出现这个错误,一般是你的编译源码中存在重复的源码 解决方法:"Build Phases" -> "Compile Sources" 去删 ...