Mean Requests
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In this problem you will have to deal with a real algorithm that is used in the VK social network.

As in any other company that creates high-loaded websites, the VK developers have to deal with request statistics regularly. An important indicator reflecting the load of the site is the mean number of requests for a certain period of time of T seconds (for example, T = 60 seconds = 1 min and T = 86400 seconds = 1 day). For example, if this value drops dramatically, that shows that the site has access problem. If this value grows, that may be a reason to analyze the cause for the growth and add more servers to the website if it is really needed.

However, even such a natural problem as counting the mean number of queries for some period of time can be a challenge when you process the amount of data of a huge social network. That's why the developers have to use original techniques to solve problems approximately, but more effectively at the same time.

Let's consider the following formal model. We have a service that works for n seconds. We know the number of queries to this resourceat at each moment of time t (1 ≤ t ≤ n). Let's formulate the following algorithm of calculating the mean with exponential decay. Let c be some real number, strictly larger than one.

// setting this constant value correctly can adjust    // the time range for which statistics will be calculated double c = some constant value; 
// as the result of the algorithm's performance this variable will contain // the mean number of queries for the last // T seconds by the current moment of time double mean = 0.0;
for t = 1..n: // at each second, we do the following: // at is the number of queries that came at the last second; mean = (mean + at / T) / c;

Thus, the mean variable is recalculated each second using the number of queries that came at that second. We can make some mathematical calculations and prove that choosing the value of constant c correctly will make the value of mean not very different from the real mean value ax at t - T + 1 ≤ x ≤ t.

The advantage of such approach is that it only uses the number of requests at the current moment of time and doesn't require storing the history of requests for a large time range. Also, it considers the recent values with the weight larger than the weight of the old ones, which helps to react to dramatic change in values quicker.

However before using the new theoretical approach in industrial programming, there is an obligatory step to make, that is, to test its credibility practically on given test data sets. Your task is to compare the data obtained as a result of the work of an approximate algorithm to the real data.

You are given n values at, integer T and real number c. Also, you are given m moments pj (1 ≤ j ≤ m), where we are interested in the mean value of the number of queries for the last T seconds. Implement two algorithms. The first one should calculate the required value by definition, i.e. by the formula . The second algorithm should calculate the mean value as is described above. Print both values and calculate the relative error of the second algorithm by the formula , where approx is the approximate value, obtained by the second algorithm, and real is the exact value obtained by the first algorithm.

Input

The first line contains integer n (1 ≤ n ≤ 2·105), integer T (1 ≤ T ≤ n) and real number c (1 < c ≤ 100) — the time range when the resource should work, the length of the time range during which we need the mean number of requests and the coefficient c of the work of approximate algorithm. Number c is given with exactly six digits after the decimal point.

The next line contains n integers at (1 ≤ at ≤ 106) — the number of queries to the service at each moment of time.

The next line contains integer m (1 ≤ m ≤ n) — the number of moments of time when we are interested in the mean number of queries for the last T seconds.

The next line contains m integers pj (T ≤ pj ≤ n), representing another moment of time for which we need statistics. Moments pj are strictly increasing.

Output

Print m lines. The j-th line must contain three numbers realapprox and error, where:

  •  is the real mean number of queries for the last T seconds;
  • approx is calculated by the given algorithm and equals mean at the moment of time t = pj (that is, after implementing the pj-th iteration of the cycle);
  •  is the relative error of the approximate algorithm.

The numbers you printed will be compared to the correct numbers with the relative or absolute error 10 - 4. It is recommended to print the numbers with at least five digits after the decimal point.

Sample test(s)
input
1 1 2.000000 1 1 1
output
1.000000 0.500000 0.500000
input
11 4 1.250000 9 11 7 5 15 6 6 6 6 6 6 8 4 5 6 7 8 9 10 11
output
8.000000 4.449600 0.443800 9.500000 6.559680 0.309507 8.250000 6.447744 0.218455 8.000000 6.358195 0.205226 8.250000 6.286556 0.237993 6.000000 6.229245 0.038207 6.000000 6.183396 0.030566 6.000000 6.146717 0.024453
input
13 4 1.250000 3 3 3 3 3 20 3 3 3 3 3 3 3 10 4 5 6 7 8 9 10 11 12 13
output
3.000000 1.771200 0.409600 3.000000 2.016960 0.327680 7.250000 5.613568 0.225715 7.250000 5.090854 0.297813 7.250000 4.672684 0.355492 7.250000 4.338147 0.401635 3.000000 4.070517 0.356839 3.000000 3.856414 0.285471 3.000000 3.685131 0.228377 3.000000 3.548105 0.182702
我看不懂关于real的那个公式。后来发现他是前T个的mean,orz
 #include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll ;
const int M = * 1e5 + ;
int a [M] ;
int n , T , m;
double c ;
double real , mean , error ; int main ()
{
// freopen ("a.txt" , "r" , stdin ) ;
scanf ("%d%d%lf" , &n , &T , &c) ;
for (int i = ; i <= n ; i++) {
scanf ("%d", &a[i] ) ;
}
scanf ("%d" , &m) ; int b[M] ;
for (int i = ; i <= m ; i++) {
scanf ("%d" , &b[i]) ;
}
double sum = ;
double mean = ;
int k = ;
for (int i = ; i <= n ; i++) {
sum += a[i] ;
if (i > T) {
sum -= a[i - T] ;
}
mean = (double) 1.0 * (mean + 1.0 * a[i] / T) / c ;
if (i == b[k]) {
real = 1.0 * sum / T ;
error = fabs (real - mean) / real ;
printf ("%.6f %.6f %.6f\n" , real , mean , error ) ;
k++ ;
}
}
return ;
}

cf.VK CUP 2015.B.Mean Requests的更多相关文章

  1. cf.VK CUP 2015.C.Name Quest(贪心)

    Name Quest time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...

  2. Codeforces Round VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM 暴力出奇迹!

    VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM Time Lim ...

  3. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  4. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) E. Correcting Mistakes 水题

    E. Correcting Mistakes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...

  5. VK Cup 2015 - Finals, online mirror D. Restructuring Company 并查集

    D. Restructuring Company Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. VK Cup 2015 - Round 1 -E. Rooks and Rectangles 线段树最值+扫描线

    题意: n * m的棋盘, k个位置有"rook"(车),q次询问,问是否询问的方块内是否每一行都有一个车或者每一列都有一个车? 满足一个即可 先考虑第一种情况, 第二种类似,sw ...

  7. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) B. Work Group 树形dp

    题目链接: http://codeforces.com/problemset/problem/533/B B. Work Group time limit per test2 secondsmemor ...

  8. VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线+线段树

    题目链接: http://codeforces.com/problemset/problem/522/D D. Closest Equals time limit per test3 secondsm ...

  9. codeforces VK Cup 2015 - Qualification Round 1 B. Photo to Remember 水题

    B. Photo to Remember Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/522/ ...

随机推荐

  1. 20145215实验五 Java网络编程及安全

    20145215实验五 Java网络编程及安全 实验内容 掌握Socket程序的编写: 掌握密码技术的使用: 设计安全传输系统. 实验步骤 本次实验我的结对编程对象是20145208蔡野,我负责编写客 ...

  2. Linux下线程池的理解与简单实现

    首先,线程池是什么?顾名思义,就是把一堆开辟好的线程放在一个池子里统一管理,就是一个线程池. 其次,为什么要用线程池,难道来一个请求给它申请一个线程,请求处理完了释放线程不行么?也行,但是如果创建线程 ...

  3. 如何远程断点调试本地localhost项目

    前言 对于一般开发网站的IDE自带的服务器是都跑在 localhost 地址上的.(如下图的asp.net) 而这种地址是只能在本机通过 localhost 或 127.0.0.1 地址访问到,而无法 ...

  4. Bootstrap系列 -- 30. 按钮工具栏

    在富文本编辑器中,将按钮组分组排列在一起,比如说复制.剪切和粘贴一组:左对齐.中间对齐.右对齐和两端对齐一组.Bootstrap框架按钮工具栏也提供了这样的制作方法,你只需要将按钮组“btn-grou ...

  5. Linq之IQueryable接口与IEnumberable区别

    IEnumerable接口 公开枚举器,该枚举器支持在指定类型的集合上进行简单迭代.也就是说:实现了此接口的object,就可以直接使用foreach遍历此object: IEnumerable 包含 ...

  6. jQuery基础之(五)jQuery自定义添加"$"与解决"$"的冲突

    1.自定义添加$ 从上面四篇文章我们看到jQuery的强大,但无论如何,jQuery都不可能满足所有用户的需求,而且有一些需求十分小众,也不适合放到整个jQuery框架中,正是因为这一点,jQuery ...

  7. Java设计模式-建造者模式(Builder)

    将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示. [构建与表示分离,同构建不同表示] 与抽象工厂的区别:在建造者模式里,有个指导者,由指导者来管理建造者,用户是与指导者联系的,指 ...

  8. Hibernate-缓存

    Hibernate是一个持久层框架,经常访问物理数据库.为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能.缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在 ...

  9. Hamcrest

    Hamcrest比起JUnit的assert系列方法来,有更好的可读性,它按照参数从左到右的符合自然的顺序来展示,如actual is(notNullValue()),是对测试断言的改进.同时不会被哪 ...

  10. codeforces 375D:Tree and Queries

    Description You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. ...