I2C 总线协议
1.I2C协议
2条双向串行线,一条数据线SDA,一条时钟线SCL。
SDA传输数据是大端传输,每次传输8bit,即一字节。
支持多主控(multimastering),任何时间点只能有一个主控。
总线上每个设备都有自己的一个addr,共7个bit,广播地址全0.
系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。
1.1 I2C位传输
数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit;
若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲)
数据改变:SCL为低电平时,SDA线才能改变传输的bit
1.2 I2C开始和结束信号
开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。
1.3 I2C应答信号
Master每发送完8bit数据后等待Slave的ACK。
即在第9个clock,若从IC发ACK,SDA会被拉低。
若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示:
1.4 I2C写流程
写寄存器的标准流程为:
1. Master发起START
2. Master发送I2C addr(7bit)和w操作0(1bit),等待ACK
3. Slave发送ACK
4. Master发送reg addr(8bit),等待ACK
5. Slave发送ACK
6. Master发送data(8bit),即要写入寄存器中的数据,等待ACK
7. Slave发送ACK
8. 第6步和第7步可以重复多次,即顺序写多个寄存器
9. Master发起STOP
写一个寄存器
写多个寄存器
1.5 I2C读流程
读寄存器的标准流程为:
1. Master发送I2C addr(7bit)和w操作1(1bit),等待ACK
2. Slave发送ACK
3. Master发送reg addr(8bit),等待ACK
4. Slave发送ACK
5. Master发起START
6. Master发送I2C addr(7bit)和r操作1(1bit),等待ACK
7. Slave发送ACK
8. Slave发送data(8bit),即寄存器里的值
9. Master发送ACK
10. 第8步和第9步可以重复多次,即顺序读多个寄存器
读一个寄存器
读多个寄存器
2. PowerPC的I2C实现
Mpc8560的CCSR中控制I2C的寄存器共有6个。
2.1 I2CADR 地址寄存器
CPU也可以是I2C的Slave,CPU的I2C地址有 I2CADR指定
2.2 I2CFDR 频率设置寄存器
The serial bit clock frequency of SCL is equal to the CCB clock divided by the divider.
用来设置I2C总线频率
2.3 I2CCR 控制寄存器
MEN: Module Enable. 置1时,I2C模块使能
MIEN:Module Interrupt Enable. 置1时,I2C中断使能。
MSTA:Master/slave mode. 1 Master mode,0 Slave mode.
当1->0时,CPU发起STOP信号
当0->1时,CPU发起START信号
MTX:Transmit/receive mode select.0 Receive mode,1 Transmit mode
TXAK:Transfer acknowledge. 置1时,CPU在9th clock发送ACK拉低SDA
RSTA:Repeat START. 置1时,CPU发送REPEAT START
BCST:置1,CPU接收广播信息(信息的slave addr为7个0)
2.4 I2CSR 状态寄存器
MCF:0 Byte transfer is in process
1 Byte transfer is completed
MAAS:当CPU作为Slave时,若I2CDR与会话中Slaveaddr匹配,此bit被置1
MBB:0 I2C bus idle
1 I2C bus busy
MAL:若置1,表示仲裁失败
BCSTM:若置1,表示接收到广播信息
SRW:When MAAS is set, SRW indicates the value of the R/W command bit of the calling address, which is sent from the master.
0 Slave receive, master writing to slave
1 Slave transmit, master reading from slave
MIF:Module
interrupt. The MIF bit is set when an interrupt is pending, causing a
processor interrupt request(provided I2CCR[MIEN] is set)
RXAK:若置1,表示收到了ACK
2.5 I2CDR 数据寄存器
这个寄存器储存CPU将要传输的数据。
3. PPC-Linux中I2C的实现
内核代码(linux-2.6.24)中,通过I2C总线存取寄存器的函数都在文件drivers/i2c/busses/i2c-mpc.c中
最重要的函数是mpc_xfer.
static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct i2c_msg *pmsg;
int i;
int ret = ;
unsigned long orig_jiffies = jiffies;
struct mpc_i2c *i2c = i2c_get_adapdata(adap);
mpc_i2c_start(i2c); // 设置I2CCR[MEN], 使能I2C module
/* Allow bus up to 1s to become not busy */
//一直读I2CSR[MBB],等待I2C总线空闲下来
while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
if (signal_pending(current)) {
pr_debug("I2C: Interrupted\n");
writeccr(i2c, );
return -EINTR;
}
if (time_after(jiffies, orig_jiffies + HZ)) {
pr_debug("I2C: timeout\n");
if (readb(i2c->base + MPC_I2C_SR) ==
(CSR_MCF | CSR_MBB | CSR_RXAK))
mpc_i2c_fixup(i2c);
return -EIO;
}
schedule();
}
for (i = ; ret >= && i < num; i++) {
pmsg = &msgs[i];
pr_debug("Doing %s %d bytes to 0x%02x - %d of %d messages\n",
pmsg->flags & I2C_M_RD ? "read" : "write",
pmsg->len, pmsg->addr, i + , num);
//根据消息里的flag进行读操作或写操作
if (pmsg->flags & I2C_M_RD)
ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
else
ret = mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
}
mpc_i2c_stop(i2c); //保证为I2CCSR[MSTA]为0,保证能触发STOP
return (ret < ) ? ret : num;
}
static int mpc_write(struct mpc_i2c *i2c, int target,
const u8 * data, int length, int restart)
{
int i;
unsigned timeout = i2c->adap.timeout;
u32 flags = restart ? CCR_RSTA : ;
/* Start with MEN */ //以防万一,保证I2C模块使能起来
if (!restart)
writeccr(i2c, CCR_MEN);
/* Start as master */ //写了I2CCR[CCR_MSTA],触发CPU发起START信号
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
/* Write target byte */ //CPU发送一个字节,slave I2C addr和0 (写操作bit)
writeb((target << ), i2c->base + MPC_I2C_DR);
if (i2c_wait(i2c, timeout, ) < ) //等待slave 发ACK
return -;
for (i = ; i < length; i++) {
/* Write data byte */
writeb(data[i], i2c->base + MPC_I2C_DR); //CPU接着发数据,包括reg addr和data
if (i2c_wait(i2c, timeout, ) < ) //等待slave 发ACK
return -;
}
return ;
} static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
{
unsigned long orig_jiffies = jiffies;
u32 x;
int result = ;
if (i2c->irq == )
{ //循环读I2CSR,直到I2CSR[MIF]置1
while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
schedule();
if (time_after(jiffies, orig_jiffies + timeout)) {
pr_debug("I2C: timeout\n");
writeccr(i2c, );
result = -EIO;
break;
}
}
x = readb(i2c->base + MPC_I2C_SR);
writeb(, i2c->base + MPC_I2C_SR);
} else {
/* Interrupt mode */
result = wait_event_interruptible_timeout(i2c->queue,
(i2c->interrupt & CSR_MIF), timeout * HZ);
if (unlikely(result < )) {
pr_debug("I2C: wait interrupted\n");
writeccr(i2c, );
} else if (unlikely(!(i2c->interrupt & CSR_MIF))) {
pr_debug("I2C: wait timeout\n");
writeccr(i2c, );
result = -ETIMEDOUT;
}
x = i2c->interrupt;
i2c->interrupt = ;
}
if (result < )
return result;
if (!(x & CSR_MCF)) {
pr_debug("I2C: unfinished\n");
return -EIO;
}
if (x & CSR_MAL) { //仲裁失败
pr_debug("I2C: MAL\n");
return -EIO;
}
if (writing && (x & CSR_RXAK)) {//写后没收到ACK
pr_debug("I2C: No RXAK\n");
/* generate stop */
writeccr(i2c, CCR_MEN);
return -EIO;
}
return ;
} static int mpc_read(struct mpc_i2c *i2c, int target,
u8 * data, int length, int restart)
{
unsigned timeout = i2c->adap.timeout;
int i;
u32 flags = restart ? CCR_RSTA : ;
/* Start with MEN */ //以防万一,保证I2C模块使能
if (!restart)
writeccr(i2c, CCR_MEN);
/* Switch to read - restart */
//注意这里,再次把CCR_MSTA置1,再触发 START
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
/* Write target address byte - this time with the read flag set */
//CPU发送slave I2C addr和读操作1
writeb((target << ) | , i2c->base + MPC_I2C_DR); //等待Slave发ACK if (i2c_wait(i2c, timeout, ) < )
return -;
if (length) {
if (length == )
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
else //为什么不置 TXAK
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
/* Dummy read */
readb(i2c->base + MPC_I2C_DR);
}
for (i = ; i < length; i++) {
if (i2c_wait(i2c, timeout, ) < )
return -;
/* Generate txack on next to last byte */
//注意这里TXAK置1,表示CPU每收到1byte数据后,会发送ACK
if (i == length - )
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
/* Generate stop on last byte */
//注意这里CCR_MSTA [1->0] CPU会触发STOP
if (i == length - )
writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_TXAK);
data[i] = readb(i2c->base + MPC_I2C_DR);
}
return length;
}
转载来自:http://blog.chinaunix.net/uid-24148050-id-120532.html
I2C 总线协议的更多相关文章
- [I2C]I2C总线协议图解
转自:http://blog.csdn.net/w89436838/article/details/38660631 1 I2C总线物理拓扑结构 I2C 总线在物理连接上非常简单,分别由S ...
- I2C总线协议的简要说明
为了快速的了解I2C总线协议,此处采用另类的方式进行说明. 倘若你和另外一个人只能通过一个开关加灯泡的装置在不同的两个房间进行交流,以下是很简单能说明的一个模型: 你的房间有一个开关,另外一间房间有一 ...
- I2C总线协议的总结介绍
在看天翔哥的视频之后,他强调要把I2C协议好好研究一下,那么就对一些基本的通信手段是十分有帮助的..那么就来了解一下I2C总线协议的一些知识吧. I2C(Inter-Integrated Circui ...
- I2C总线协议的软件模拟实现方法
I2C总线协议的软件模拟实现方法 在上一篇博客中已经讲过I2C总线通信协议,本文讲述I2C总线协议的软件模拟实现方法. 1. 简述 所谓的I2C总线协议的软件模拟实现方法,就是用软件控制GPIO的输入 ...
- I2C总线协议图解(转载)
转自:http://blog.csdn.net/w89436838/article/details/38660631 另外,https://blog.csdn.net/qq_38410730/arti ...
- 【转】I2C总线协议
I2C总线(Inter Integrated-Circuit)是由PHILIPS公司在上世纪80年代发明的一种电路板级串行总线标准,通过两根信号线——时钟线SCL和数据线SDA——即可完成主从机的单工 ...
- I2C总线协议
1.I2C协议 2条双向串行线,一条数据线SDA,一条时钟线SCL. SDA传输数据是大端传输,每次传输8bit,即一字节. 支持多主控(multimastering),任何时间点只能有 ...
- I2C总线协议学习笔记 (转载)
1.I2C协议 2条双向串行线,一条数据线SDA,一条时钟线SCL. SDA传输数据是大端传输,每次传输8bit,即一字节. 支持多主控(multimastering),任何时间点只能有一 ...
- I2C总线协议详解
I2C总线定义 I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备.I2C总线产生于在80年代,最初为音 ...
随机推荐
- Dancing Link 详解(转载)
Dancing Link详解: http://www.cnblogs.com/grenet/p/3145800.html Dancing Link求解数独: http://www.cnblogs.co ...
- 【C#】线程之Task
Task开启线程 有两种启动方式: 1.构造创建线程,然后启动 var taskForAction = new Task(() => { //do something }); taskForAc ...
- Unity3D入门基本概念整理
1. (1)在场景中添加资源 只需单击工程视图 (Project View) 中的网格(Mesh)并拖动至层级视图 (Hierarchy) 或场景视图 (Scene View),便可将其添加至场景 ( ...
- 参数化命令相关知识点(防止Sql注入)
一: 使用参数化命令查询DAL类: public DataTable StudentDAL(string name,string gender) { string str="连接字符串&qu ...
- MSIL指令集
名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推送到计算堆栈上. Add.Ovf.Un 将两个无符号整数值相加,执行溢出检查,并且 ...
- 重新想象 Windows 8.1 Store Apps (91) - 后台任务的新特性: 下载和上传的新特性, 程序启动前预下载网络资源, 后台任务的其它新特性
[源码下载] 重新想象 Windows 8.1 Store Apps (91) - 后台任务的新特性: 下载和上传的新特性, 程序启动前预下载网络资源, 后台任务的其它新特性 作者:webabcd 介 ...
- X3DOM 1.6.1 发布注记
X3DOM 1.6.1 主要包含了一些新的功能特性.bug修复,是1.6的维护性更新版本. 特性 ClipPlane 支持 实例 here 及文档 here TwoSidedMaterial 支持 实 ...
- CentOS7.2设置zabbix
准备工作 1.lnmp或lamp环境,本机环境:CentOS 7.2 64位,nginx1.10.2 php5.6.26 mysql5.7.15 2.软件Zabbix wget http://nchc ...
- php学习笔记:自定义函数的调用
PHP内置了超过1000个函数,因此函数使得PHP成为一门非常强大的语言.大多数时候我们使用系统的内置函数就可以满足需求,但是自定义函数通过将一组代码封装起来,使代码进行复用,程序结构与逻辑更加清晰. ...
- 通过NameValuePairsValueProvider对象来获取指定前缀的Key
using System; using System.Collections.Generic; using System.Linq; using System.Web.Http.ValueProvid ...