Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了

 class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};

算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:

  • dp[i][j] = dp[i-1][j] + dp[i][j-1]
  • 边界条件:dp[i][1] = 1, dp[1][j] = 1
 class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};

上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:

 class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};

算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出        本文地址

 class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
} int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值

 class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html

LeetCode:Unique Paths I II的更多相关文章

  1. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  2. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  3. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  4. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  5. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  6. [leetcode]Unique Paths II @ Python

    原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...

  7. LEETCODE —— Unique Paths II [Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  8. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  9. [Leetcode] unique paths ii 独特路径

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

随机推荐

  1. 【AdaBoost算法】基于OpenCV实现人脸检测Demo

    一.关于检测算法 分类器训练: 通过正样本与负样本训练可得到分类器,opencv有编译好的训练Demo,按要求训练即可生成,这里我们直接使用其已经训练好的分类器检测: 检测过程: 检测过程很简单,可以 ...

  2. C# 文件操作(上传,下载,读取,写入)

    1. 通过byte[]数据下载文件(这种方法可用于以开放Api的形式传递文件内容) public void FileDownLoadByByte(byte[] fileData, string fil ...

  3. 问题解决——基于MSCOMM32.OCX控件的类在客户机不能创建控件

    大家不要笑我了,我不喜欢用那个人家写的串口类. 所以导出了MSCOMM32.OCX的类,然后在此基础上写了一个串口打印机的小工具类. -------------声明--------------- 本文 ...

  4. lucene索引

    一.lucene索引 1.文档层次结构 索引(Index):一个索引放在一个文件夹中: 段(Segment):一个索引中可以有很多段,段与段之间是独立的,添加新的文档可能产生新段,不同的段可以合并成一 ...

  5. 被废弃的 Thread.stop, Thread.suspend, Thread.resume 和Runtime.runFinalizersOnExit

    最近学习多线程的知识,看到API里说这些方法被废弃了,就查了一下原因 Thread.stop 这个方法会解除被加锁的对象的锁,因而可能造成这些对象处于不一致的状态,而且这个方法造成的ThreadDea ...

  6. poj 3667 Hotel(线段树,区间合并)

    Hotel Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 10858Accepted: 4691 Description The ...

  7. linux进程间通信-XSI IPC

    一 什么是XSI IPC     有三种 IPC我们称作XSI IPC,即消息队列.信号量以及共享存储器(共享内存),它们之间有很多相似之处. 二 标识符和键     每个内核中的 IPC结构(消息队 ...

  8. centos7下docker 部署javaweb

    LXC linux container 百度百科:http://baike.baidu.com/link?url=w_Xy56MN9infb0hfYObib4PlXm-PW02hzTlCLLb1W2d ...

  9. C# Graphic 绘制圆、三角形、椭圆、图片

    在form和panel上可以绘制图形,线段,圆,文字,图形等等. 绘制代码必须放在OnPaint()函数里面,因为窗体刷新的时候,都会调用该函数,重新刷新所绘的图. 示例代码在Panel上绘制图形来简 ...

  10. 为TFS配置跨平台的生成服务器Xplat (Ubuntu Linux)

    1. 概述 从TFS 2015开始,微软开始支持跨平台的构建代理.你可以使用TFS的Xplat代理,方便的在基于IOS, Unix和Linux的服务器上搭建生成代理,实现构建.发布等功能.本文档已Ub ...